Description: If the domain of a one-to-one function is finite, then the function's domain is dominated by its codomain when the latter is a set. This theorem is proved without using the Axiom of Power Sets (unlike f1dom2g ). (Contributed by BTernaryTau, 24-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1domfi2 | |- ( ( A e. Fin /\ B e. V /\ F : A -1-1-> B ) -> A ~<_ B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1fn | |- ( F : A -1-1-> B -> F Fn A ) |
|
| 2 | fnfi | |- ( ( F Fn A /\ A e. Fin ) -> F e. Fin ) |
|
| 3 | 1 2 | sylan | |- ( ( F : A -1-1-> B /\ A e. Fin ) -> F e. Fin ) |
| 4 | 3 | ancoms | |- ( ( A e. Fin /\ F : A -1-1-> B ) -> F e. Fin ) |
| 5 | 4 | 3adant2 | |- ( ( A e. Fin /\ B e. V /\ F : A -1-1-> B ) -> F e. Fin ) |
| 6 | f1dom3g | |- ( ( F e. Fin /\ B e. V /\ F : A -1-1-> B ) -> A ~<_ B ) |
|
| 7 | 5 6 | syld3an1 | |- ( ( A e. Fin /\ B e. V /\ F : A -1-1-> B ) -> A ~<_ B ) |