Metamath Proof Explorer


Theorem f1domfi2

Description: If the domain of a one-to-one function is finite, then the function's domain is dominated by its codomain when the latter is a set. This theorem is proved without using the Axiom of Power Sets (unlike f1dom2g ). (Contributed by BTernaryTau, 24-Nov-2024)

Ref Expression
Assertion f1domfi2
|- ( ( A e. Fin /\ B e. V /\ F : A -1-1-> B ) -> A ~<_ B )

Proof

Step Hyp Ref Expression
1 f1fn
 |-  ( F : A -1-1-> B -> F Fn A )
2 fnfi
 |-  ( ( F Fn A /\ A e. Fin ) -> F e. Fin )
3 1 2 sylan
 |-  ( ( F : A -1-1-> B /\ A e. Fin ) -> F e. Fin )
4 3 ancoms
 |-  ( ( A e. Fin /\ F : A -1-1-> B ) -> F e. Fin )
5 4 3adant2
 |-  ( ( A e. Fin /\ B e. V /\ F : A -1-1-> B ) -> F e. Fin )
6 f1dom3g
 |-  ( ( F e. Fin /\ B e. V /\ F : A -1-1-> B ) -> A ~<_ B )
7 5 6 syld3an1
 |-  ( ( A e. Fin /\ B e. V /\ F : A -1-1-> B ) -> A ~<_ B )