Metamath Proof Explorer


Theorem f1eq2

Description: Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997)

Ref Expression
Assertion f1eq2
|- ( A = B -> ( F : A -1-1-> C <-> F : B -1-1-> C ) )

Proof

Step Hyp Ref Expression
1 feq2
 |-  ( A = B -> ( F : A --> C <-> F : B --> C ) )
2 1 anbi1d
 |-  ( A = B -> ( ( F : A --> C /\ Fun `' F ) <-> ( F : B --> C /\ Fun `' F ) ) )
3 df-f1
 |-  ( F : A -1-1-> C <-> ( F : A --> C /\ Fun `' F ) )
4 df-f1
 |-  ( F : B -1-1-> C <-> ( F : B --> C /\ Fun `' F ) )
5 2 3 4 3bitr4g
 |-  ( A = B -> ( F : A -1-1-> C <-> F : B -1-1-> C ) )