Description: Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997)
Ref | Expression | ||
---|---|---|---|
Assertion | f1eq2 | |- ( A = B -> ( F : A -1-1-> C <-> F : B -1-1-> C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq2 | |- ( A = B -> ( F : A --> C <-> F : B --> C ) ) |
|
2 | 1 | anbi1d | |- ( A = B -> ( ( F : A --> C /\ Fun `' F ) <-> ( F : B --> C /\ Fun `' F ) ) ) |
3 | df-f1 | |- ( F : A -1-1-> C <-> ( F : A --> C /\ Fun `' F ) ) |
|
4 | df-f1 | |- ( F : B -1-1-> C <-> ( F : B --> C /\ Fun `' F ) ) |
|
5 | 2 3 4 | 3bitr4g | |- ( A = B -> ( F : A -1-1-> C <-> F : B -1-1-> C ) ) |