Description: Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1eq3 | |- ( A = B -> ( F : C -1-1-> A <-> F : C -1-1-> B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq3 | |- ( A = B -> ( F : C --> A <-> F : C --> B ) ) |
|
| 2 | 1 | anbi1d | |- ( A = B -> ( ( F : C --> A /\ Fun `' F ) <-> ( F : C --> B /\ Fun `' F ) ) ) |
| 3 | df-f1 | |- ( F : C -1-1-> A <-> ( F : C --> A /\ Fun `' F ) ) |
|
| 4 | df-f1 | |- ( F : C -1-1-> B <-> ( F : C --> B /\ Fun `' F ) ) |
|
| 5 | 2 3 4 | 3bitr4g | |- ( A = B -> ( F : C -1-1-> A <-> F : C -1-1-> B ) ) |