| Step | Hyp | Ref | Expression | 
						
							| 1 |  | f1cocnv1 |  |-  ( F : A -1-1-> B -> ( `' F o. F ) = ( _I |` A ) ) | 
						
							| 2 |  | coeq2 |  |-  ( F = G -> ( `' F o. F ) = ( `' F o. G ) ) | 
						
							| 3 | 2 | eqeq1d |  |-  ( F = G -> ( ( `' F o. F ) = ( _I |` A ) <-> ( `' F o. G ) = ( _I |` A ) ) ) | 
						
							| 4 | 1 3 | syl5ibcom |  |-  ( F : A -1-1-> B -> ( F = G -> ( `' F o. G ) = ( _I |` A ) ) ) | 
						
							| 5 | 4 | adantr |  |-  ( ( F : A -1-1-> B /\ G : A -1-1-> B ) -> ( F = G -> ( `' F o. G ) = ( _I |` A ) ) ) | 
						
							| 6 |  | f1fn |  |-  ( G : A -1-1-> B -> G Fn A ) | 
						
							| 7 | 6 | adantl |  |-  ( ( F : A -1-1-> B /\ G : A -1-1-> B ) -> G Fn A ) | 
						
							| 8 | 7 | adantr |  |-  ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ ( `' F o. G ) = ( _I |` A ) ) -> G Fn A ) | 
						
							| 9 |  | f1fn |  |-  ( F : A -1-1-> B -> F Fn A ) | 
						
							| 10 | 9 | adantr |  |-  ( ( F : A -1-1-> B /\ G : A -1-1-> B ) -> F Fn A ) | 
						
							| 11 | 10 | adantr |  |-  ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ ( `' F o. G ) = ( _I |` A ) ) -> F Fn A ) | 
						
							| 12 |  | equid |  |-  x = x | 
						
							| 13 |  | resieq |  |-  ( ( x e. A /\ x e. A ) -> ( x ( _I |` A ) x <-> x = x ) ) | 
						
							| 14 | 12 13 | mpbiri |  |-  ( ( x e. A /\ x e. A ) -> x ( _I |` A ) x ) | 
						
							| 15 | 14 | anidms |  |-  ( x e. A -> x ( _I |` A ) x ) | 
						
							| 16 | 15 | adantl |  |-  ( ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ ( `' F o. G ) = ( _I |` A ) ) /\ x e. A ) -> x ( _I |` A ) x ) | 
						
							| 17 |  | breq |  |-  ( ( `' F o. G ) = ( _I |` A ) -> ( x ( `' F o. G ) x <-> x ( _I |` A ) x ) ) | 
						
							| 18 | 17 | ad2antlr |  |-  ( ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ ( `' F o. G ) = ( _I |` A ) ) /\ x e. A ) -> ( x ( `' F o. G ) x <-> x ( _I |` A ) x ) ) | 
						
							| 19 | 16 18 | mpbird |  |-  ( ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ ( `' F o. G ) = ( _I |` A ) ) /\ x e. A ) -> x ( `' F o. G ) x ) | 
						
							| 20 |  | fnfun |  |-  ( G Fn A -> Fun G ) | 
						
							| 21 | 7 20 | syl |  |-  ( ( F : A -1-1-> B /\ G : A -1-1-> B ) -> Fun G ) | 
						
							| 22 | 7 | fndmd |  |-  ( ( F : A -1-1-> B /\ G : A -1-1-> B ) -> dom G = A ) | 
						
							| 23 | 22 | eleq2d |  |-  ( ( F : A -1-1-> B /\ G : A -1-1-> B ) -> ( x e. dom G <-> x e. A ) ) | 
						
							| 24 | 23 | biimpar |  |-  ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ x e. A ) -> x e. dom G ) | 
						
							| 25 |  | funopfvb |  |-  ( ( Fun G /\ x e. dom G ) -> ( ( G ` x ) = y <-> <. x , y >. e. G ) ) | 
						
							| 26 | 21 24 25 | syl2an2r |  |-  ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ x e. A ) -> ( ( G ` x ) = y <-> <. x , y >. e. G ) ) | 
						
							| 27 | 26 | bicomd |  |-  ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ x e. A ) -> ( <. x , y >. e. G <-> ( G ` x ) = y ) ) | 
						
							| 28 |  | df-br |  |-  ( x G y <-> <. x , y >. e. G ) | 
						
							| 29 |  | eqcom |  |-  ( y = ( G ` x ) <-> ( G ` x ) = y ) | 
						
							| 30 | 27 28 29 | 3bitr4g |  |-  ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ x e. A ) -> ( x G y <-> y = ( G ` x ) ) ) | 
						
							| 31 | 30 | biimpd |  |-  ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ x e. A ) -> ( x G y -> y = ( G ` x ) ) ) | 
						
							| 32 |  | df-br |  |-  ( x F y <-> <. x , y >. e. F ) | 
						
							| 33 |  | fnfun |  |-  ( F Fn A -> Fun F ) | 
						
							| 34 | 10 33 | syl |  |-  ( ( F : A -1-1-> B /\ G : A -1-1-> B ) -> Fun F ) | 
						
							| 35 | 10 | fndmd |  |-  ( ( F : A -1-1-> B /\ G : A -1-1-> B ) -> dom F = A ) | 
						
							| 36 | 35 | eleq2d |  |-  ( ( F : A -1-1-> B /\ G : A -1-1-> B ) -> ( x e. dom F <-> x e. A ) ) | 
						
							| 37 | 36 | biimpar |  |-  ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ x e. A ) -> x e. dom F ) | 
						
							| 38 |  | funopfvb |  |-  ( ( Fun F /\ x e. dom F ) -> ( ( F ` x ) = y <-> <. x , y >. e. F ) ) | 
						
							| 39 | 34 37 38 | syl2an2r |  |-  ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ x e. A ) -> ( ( F ` x ) = y <-> <. x , y >. e. F ) ) | 
						
							| 40 | 32 39 | bitr4id |  |-  ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ x e. A ) -> ( x F y <-> ( F ` x ) = y ) ) | 
						
							| 41 |  | vex |  |-  y e. _V | 
						
							| 42 |  | vex |  |-  x e. _V | 
						
							| 43 | 41 42 | brcnv |  |-  ( y `' F x <-> x F y ) | 
						
							| 44 |  | eqcom |  |-  ( y = ( F ` x ) <-> ( F ` x ) = y ) | 
						
							| 45 | 40 43 44 | 3bitr4g |  |-  ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ x e. A ) -> ( y `' F x <-> y = ( F ` x ) ) ) | 
						
							| 46 | 45 | biimpd |  |-  ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ x e. A ) -> ( y `' F x -> y = ( F ` x ) ) ) | 
						
							| 47 | 31 46 | anim12d |  |-  ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ x e. A ) -> ( ( x G y /\ y `' F x ) -> ( y = ( G ` x ) /\ y = ( F ` x ) ) ) ) | 
						
							| 48 | 47 | eximdv |  |-  ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ x e. A ) -> ( E. y ( x G y /\ y `' F x ) -> E. y ( y = ( G ` x ) /\ y = ( F ` x ) ) ) ) | 
						
							| 49 | 42 42 | brco |  |-  ( x ( `' F o. G ) x <-> E. y ( x G y /\ y `' F x ) ) | 
						
							| 50 |  | fvex |  |-  ( G ` x ) e. _V | 
						
							| 51 | 50 | eqvinc |  |-  ( ( G ` x ) = ( F ` x ) <-> E. y ( y = ( G ` x ) /\ y = ( F ` x ) ) ) | 
						
							| 52 | 48 49 51 | 3imtr4g |  |-  ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ x e. A ) -> ( x ( `' F o. G ) x -> ( G ` x ) = ( F ` x ) ) ) | 
						
							| 53 | 52 | adantlr |  |-  ( ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ ( `' F o. G ) = ( _I |` A ) ) /\ x e. A ) -> ( x ( `' F o. G ) x -> ( G ` x ) = ( F ` x ) ) ) | 
						
							| 54 | 19 53 | mpd |  |-  ( ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ ( `' F o. G ) = ( _I |` A ) ) /\ x e. A ) -> ( G ` x ) = ( F ` x ) ) | 
						
							| 55 | 8 11 54 | eqfnfvd |  |-  ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ ( `' F o. G ) = ( _I |` A ) ) -> G = F ) | 
						
							| 56 | 55 | eqcomd |  |-  ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ ( `' F o. G ) = ( _I |` A ) ) -> F = G ) | 
						
							| 57 | 56 | ex |  |-  ( ( F : A -1-1-> B /\ G : A -1-1-> B ) -> ( ( `' F o. G ) = ( _I |` A ) -> F = G ) ) | 
						
							| 58 | 5 57 | impbid |  |-  ( ( F : A -1-1-> B /\ G : A -1-1-> B ) -> ( F = G <-> ( `' F o. G ) = ( _I |` A ) ) ) |