Step |
Hyp |
Ref |
Expression |
1 |
|
f1cocnv1 |
|- ( F : A -1-1-> B -> ( `' F o. F ) = ( _I |` A ) ) |
2 |
|
coeq2 |
|- ( F = G -> ( `' F o. F ) = ( `' F o. G ) ) |
3 |
2
|
eqeq1d |
|- ( F = G -> ( ( `' F o. F ) = ( _I |` A ) <-> ( `' F o. G ) = ( _I |` A ) ) ) |
4 |
1 3
|
syl5ibcom |
|- ( F : A -1-1-> B -> ( F = G -> ( `' F o. G ) = ( _I |` A ) ) ) |
5 |
4
|
adantr |
|- ( ( F : A -1-1-> B /\ G : A -1-1-> B ) -> ( F = G -> ( `' F o. G ) = ( _I |` A ) ) ) |
6 |
|
f1fn |
|- ( G : A -1-1-> B -> G Fn A ) |
7 |
6
|
adantl |
|- ( ( F : A -1-1-> B /\ G : A -1-1-> B ) -> G Fn A ) |
8 |
7
|
adantr |
|- ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ ( `' F o. G ) = ( _I |` A ) ) -> G Fn A ) |
9 |
|
f1fn |
|- ( F : A -1-1-> B -> F Fn A ) |
10 |
9
|
adantr |
|- ( ( F : A -1-1-> B /\ G : A -1-1-> B ) -> F Fn A ) |
11 |
10
|
adantr |
|- ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ ( `' F o. G ) = ( _I |` A ) ) -> F Fn A ) |
12 |
|
equid |
|- x = x |
13 |
|
resieq |
|- ( ( x e. A /\ x e. A ) -> ( x ( _I |` A ) x <-> x = x ) ) |
14 |
12 13
|
mpbiri |
|- ( ( x e. A /\ x e. A ) -> x ( _I |` A ) x ) |
15 |
14
|
anidms |
|- ( x e. A -> x ( _I |` A ) x ) |
16 |
15
|
adantl |
|- ( ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ ( `' F o. G ) = ( _I |` A ) ) /\ x e. A ) -> x ( _I |` A ) x ) |
17 |
|
breq |
|- ( ( `' F o. G ) = ( _I |` A ) -> ( x ( `' F o. G ) x <-> x ( _I |` A ) x ) ) |
18 |
17
|
ad2antlr |
|- ( ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ ( `' F o. G ) = ( _I |` A ) ) /\ x e. A ) -> ( x ( `' F o. G ) x <-> x ( _I |` A ) x ) ) |
19 |
16 18
|
mpbird |
|- ( ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ ( `' F o. G ) = ( _I |` A ) ) /\ x e. A ) -> x ( `' F o. G ) x ) |
20 |
|
fnfun |
|- ( G Fn A -> Fun G ) |
21 |
7 20
|
syl |
|- ( ( F : A -1-1-> B /\ G : A -1-1-> B ) -> Fun G ) |
22 |
|
fndm |
|- ( G Fn A -> dom G = A ) |
23 |
7 22
|
syl |
|- ( ( F : A -1-1-> B /\ G : A -1-1-> B ) -> dom G = A ) |
24 |
23
|
eleq2d |
|- ( ( F : A -1-1-> B /\ G : A -1-1-> B ) -> ( x e. dom G <-> x e. A ) ) |
25 |
24
|
biimpar |
|- ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ x e. A ) -> x e. dom G ) |
26 |
|
funopfvb |
|- ( ( Fun G /\ x e. dom G ) -> ( ( G ` x ) = y <-> <. x , y >. e. G ) ) |
27 |
21 25 26
|
syl2an2r |
|- ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ x e. A ) -> ( ( G ` x ) = y <-> <. x , y >. e. G ) ) |
28 |
27
|
bicomd |
|- ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ x e. A ) -> ( <. x , y >. e. G <-> ( G ` x ) = y ) ) |
29 |
|
df-br |
|- ( x G y <-> <. x , y >. e. G ) |
30 |
|
eqcom |
|- ( y = ( G ` x ) <-> ( G ` x ) = y ) |
31 |
28 29 30
|
3bitr4g |
|- ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ x e. A ) -> ( x G y <-> y = ( G ` x ) ) ) |
32 |
31
|
biimpd |
|- ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ x e. A ) -> ( x G y -> y = ( G ` x ) ) ) |
33 |
|
df-br |
|- ( x F y <-> <. x , y >. e. F ) |
34 |
|
fnfun |
|- ( F Fn A -> Fun F ) |
35 |
10 34
|
syl |
|- ( ( F : A -1-1-> B /\ G : A -1-1-> B ) -> Fun F ) |
36 |
|
fndm |
|- ( F Fn A -> dom F = A ) |
37 |
10 36
|
syl |
|- ( ( F : A -1-1-> B /\ G : A -1-1-> B ) -> dom F = A ) |
38 |
37
|
eleq2d |
|- ( ( F : A -1-1-> B /\ G : A -1-1-> B ) -> ( x e. dom F <-> x e. A ) ) |
39 |
38
|
biimpar |
|- ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ x e. A ) -> x e. dom F ) |
40 |
|
funopfvb |
|- ( ( Fun F /\ x e. dom F ) -> ( ( F ` x ) = y <-> <. x , y >. e. F ) ) |
41 |
35 39 40
|
syl2an2r |
|- ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ x e. A ) -> ( ( F ` x ) = y <-> <. x , y >. e. F ) ) |
42 |
33 41
|
bitr4id |
|- ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ x e. A ) -> ( x F y <-> ( F ` x ) = y ) ) |
43 |
|
vex |
|- y e. _V |
44 |
|
vex |
|- x e. _V |
45 |
43 44
|
brcnv |
|- ( y `' F x <-> x F y ) |
46 |
|
eqcom |
|- ( y = ( F ` x ) <-> ( F ` x ) = y ) |
47 |
42 45 46
|
3bitr4g |
|- ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ x e. A ) -> ( y `' F x <-> y = ( F ` x ) ) ) |
48 |
47
|
biimpd |
|- ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ x e. A ) -> ( y `' F x -> y = ( F ` x ) ) ) |
49 |
32 48
|
anim12d |
|- ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ x e. A ) -> ( ( x G y /\ y `' F x ) -> ( y = ( G ` x ) /\ y = ( F ` x ) ) ) ) |
50 |
49
|
eximdv |
|- ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ x e. A ) -> ( E. y ( x G y /\ y `' F x ) -> E. y ( y = ( G ` x ) /\ y = ( F ` x ) ) ) ) |
51 |
44 44
|
brco |
|- ( x ( `' F o. G ) x <-> E. y ( x G y /\ y `' F x ) ) |
52 |
|
fvex |
|- ( G ` x ) e. _V |
53 |
52
|
eqvinc |
|- ( ( G ` x ) = ( F ` x ) <-> E. y ( y = ( G ` x ) /\ y = ( F ` x ) ) ) |
54 |
50 51 53
|
3imtr4g |
|- ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ x e. A ) -> ( x ( `' F o. G ) x -> ( G ` x ) = ( F ` x ) ) ) |
55 |
54
|
adantlr |
|- ( ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ ( `' F o. G ) = ( _I |` A ) ) /\ x e. A ) -> ( x ( `' F o. G ) x -> ( G ` x ) = ( F ` x ) ) ) |
56 |
19 55
|
mpd |
|- ( ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ ( `' F o. G ) = ( _I |` A ) ) /\ x e. A ) -> ( G ` x ) = ( F ` x ) ) |
57 |
8 11 56
|
eqfnfvd |
|- ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ ( `' F o. G ) = ( _I |` A ) ) -> G = F ) |
58 |
57
|
eqcomd |
|- ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ ( `' F o. G ) = ( _I |` A ) ) -> F = G ) |
59 |
58
|
ex |
|- ( ( F : A -1-1-> B /\ G : A -1-1-> B ) -> ( ( `' F o. G ) = ( _I |` A ) -> F = G ) ) |
60 |
5 59
|
impbid |
|- ( ( F : A -1-1-> B /\ G : A -1-1-> B ) -> ( F = G <-> ( `' F o. G ) = ( _I |` A ) ) ) |