Step |
Hyp |
Ref |
Expression |
1 |
|
f1f |
|- ( F : A -1-1-> B -> F : A --> B ) |
2 |
1
|
frnd |
|- ( F : A -1-1-> B -> ran F C_ B ) |
3 |
|
ssfi |
|- ( ( B e. Fin /\ ran F C_ B ) -> ran F e. Fin ) |
4 |
2 3
|
sylan2 |
|- ( ( B e. Fin /\ F : A -1-1-> B ) -> ran F e. Fin ) |
5 |
|
f1f1orn |
|- ( F : A -1-1-> B -> F : A -1-1-onto-> ran F ) |
6 |
5
|
adantl |
|- ( ( B e. Fin /\ F : A -1-1-> B ) -> F : A -1-1-onto-> ran F ) |
7 |
|
f1ocnv |
|- ( F : A -1-1-onto-> ran F -> `' F : ran F -1-1-onto-> A ) |
8 |
|
f1ofo |
|- ( `' F : ran F -1-1-onto-> A -> `' F : ran F -onto-> A ) |
9 |
6 7 8
|
3syl |
|- ( ( B e. Fin /\ F : A -1-1-> B ) -> `' F : ran F -onto-> A ) |
10 |
|
fofi |
|- ( ( ran F e. Fin /\ `' F : ran F -onto-> A ) -> A e. Fin ) |
11 |
4 9 10
|
syl2anc |
|- ( ( B e. Fin /\ F : A -1-1-> B ) -> A e. Fin ) |