Metamath Proof Explorer


Theorem f1fveq

Description: Equality of function values for a one-to-one function. (Contributed by NM, 11-Feb-1997)

Ref Expression
Assertion f1fveq
|- ( ( F : A -1-1-> B /\ ( C e. A /\ D e. A ) ) -> ( ( F ` C ) = ( F ` D ) <-> C = D ) )

Proof

Step Hyp Ref Expression
1 f1veqaeq
 |-  ( ( F : A -1-1-> B /\ ( C e. A /\ D e. A ) ) -> ( ( F ` C ) = ( F ` D ) -> C = D ) )
2 fveq2
 |-  ( C = D -> ( F ` C ) = ( F ` D ) )
3 1 2 impbid1
 |-  ( ( F : A -1-1-> B /\ ( C e. A /\ D e. A ) ) -> ( ( F ` C ) = ( F ` D ) <-> C = D ) )