Metamath Proof Explorer


Theorem f1ghm0to0

Description: If a group homomorphism F is injective, it maps the zero of one group (and only the zero) to the zero of the other group. (Contributed by AV, 24-Oct-2019) (Revised by Thierry Arnoux, 13-May-2023)

Ref Expression
Hypotheses f1ghm0to0.a
|- A = ( Base ` R )
f1ghm0to0.b
|- B = ( Base ` S )
f1ghm0to0.n
|- N = ( 0g ` S )
f1ghm0to0.1
|- .0. = ( 0g ` R )
Assertion f1ghm0to0
|- ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) -> ( ( F ` X ) = N <-> X = .0. ) )

Proof

Step Hyp Ref Expression
1 f1ghm0to0.a
 |-  A = ( Base ` R )
2 f1ghm0to0.b
 |-  B = ( Base ` S )
3 f1ghm0to0.n
 |-  N = ( 0g ` S )
4 f1ghm0to0.1
 |-  .0. = ( 0g ` R )
5 4 3 ghmid
 |-  ( F e. ( R GrpHom S ) -> ( F ` .0. ) = N )
6 5 3ad2ant1
 |-  ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) -> ( F ` .0. ) = N )
7 6 eqeq2d
 |-  ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) -> ( ( F ` X ) = ( F ` .0. ) <-> ( F ` X ) = N ) )
8 simp2
 |-  ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) -> F : A -1-1-> B )
9 simp3
 |-  ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) -> X e. A )
10 ghmgrp1
 |-  ( F e. ( R GrpHom S ) -> R e. Grp )
11 1 4 grpidcl
 |-  ( R e. Grp -> .0. e. A )
12 10 11 syl
 |-  ( F e. ( R GrpHom S ) -> .0. e. A )
13 12 3ad2ant1
 |-  ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) -> .0. e. A )
14 f1veqaeq
 |-  ( ( F : A -1-1-> B /\ ( X e. A /\ .0. e. A ) ) -> ( ( F ` X ) = ( F ` .0. ) -> X = .0. ) )
15 8 9 13 14 syl12anc
 |-  ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) -> ( ( F ` X ) = ( F ` .0. ) -> X = .0. ) )
16 7 15 sylbird
 |-  ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) -> ( ( F ` X ) = N -> X = .0. ) )
17 fveq2
 |-  ( X = .0. -> ( F ` X ) = ( F ` .0. ) )
18 17 6 sylan9eqr
 |-  ( ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) /\ X = .0. ) -> ( F ` X ) = N )
19 18 ex
 |-  ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) -> ( X = .0. -> ( F ` X ) = N ) )
20 16 19 impbid
 |-  ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) -> ( ( F ` X ) = N <-> X = .0. ) )