Step |
Hyp |
Ref |
Expression |
1 |
|
f1ghm0to0.a |
|- A = ( Base ` R ) |
2 |
|
f1ghm0to0.b |
|- B = ( Base ` S ) |
3 |
|
f1ghm0to0.n |
|- N = ( 0g ` S ) |
4 |
|
f1ghm0to0.1 |
|- .0. = ( 0g ` R ) |
5 |
4 3
|
ghmid |
|- ( F e. ( R GrpHom S ) -> ( F ` .0. ) = N ) |
6 |
5
|
3ad2ant1 |
|- ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) -> ( F ` .0. ) = N ) |
7 |
6
|
eqeq2d |
|- ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) -> ( ( F ` X ) = ( F ` .0. ) <-> ( F ` X ) = N ) ) |
8 |
|
simp2 |
|- ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) -> F : A -1-1-> B ) |
9 |
|
simp3 |
|- ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) -> X e. A ) |
10 |
|
ghmgrp1 |
|- ( F e. ( R GrpHom S ) -> R e. Grp ) |
11 |
1 4
|
grpidcl |
|- ( R e. Grp -> .0. e. A ) |
12 |
10 11
|
syl |
|- ( F e. ( R GrpHom S ) -> .0. e. A ) |
13 |
12
|
3ad2ant1 |
|- ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) -> .0. e. A ) |
14 |
|
f1veqaeq |
|- ( ( F : A -1-1-> B /\ ( X e. A /\ .0. e. A ) ) -> ( ( F ` X ) = ( F ` .0. ) -> X = .0. ) ) |
15 |
8 9 13 14
|
syl12anc |
|- ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) -> ( ( F ` X ) = ( F ` .0. ) -> X = .0. ) ) |
16 |
7 15
|
sylbird |
|- ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) -> ( ( F ` X ) = N -> X = .0. ) ) |
17 |
|
fveq2 |
|- ( X = .0. -> ( F ` X ) = ( F ` .0. ) ) |
18 |
17 6
|
sylan9eqr |
|- ( ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) /\ X = .0. ) -> ( F ` X ) = N ) |
19 |
18
|
ex |
|- ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) -> ( X = .0. -> ( F ` X ) = N ) ) |
20 |
16 19
|
impbid |
|- ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) -> ( ( F ` X ) = N <-> X = .0. ) ) |