| Step | Hyp | Ref | Expression | 
						
							| 1 |  | f1ghm0to0.a |  |-  A = ( Base ` R ) | 
						
							| 2 |  | f1ghm0to0.b |  |-  B = ( Base ` S ) | 
						
							| 3 |  | f1ghm0to0.n |  |-  N = ( 0g ` R ) | 
						
							| 4 |  | f1ghm0to0.0 |  |-  .0. = ( 0g ` S ) | 
						
							| 5 | 3 4 | ghmid |  |-  ( F e. ( R GrpHom S ) -> ( F ` N ) = .0. ) | 
						
							| 6 | 5 | 3ad2ant1 |  |-  ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) -> ( F ` N ) = .0. ) | 
						
							| 7 | 6 | eqeq2d |  |-  ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) -> ( ( F ` X ) = ( F ` N ) <-> ( F ` X ) = .0. ) ) | 
						
							| 8 |  | simp2 |  |-  ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) -> F : A -1-1-> B ) | 
						
							| 9 |  | simp3 |  |-  ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) -> X e. A ) | 
						
							| 10 |  | ghmgrp1 |  |-  ( F e. ( R GrpHom S ) -> R e. Grp ) | 
						
							| 11 | 1 3 | grpidcl |  |-  ( R e. Grp -> N e. A ) | 
						
							| 12 | 10 11 | syl |  |-  ( F e. ( R GrpHom S ) -> N e. A ) | 
						
							| 13 | 12 | 3ad2ant1 |  |-  ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) -> N e. A ) | 
						
							| 14 |  | f1veqaeq |  |-  ( ( F : A -1-1-> B /\ ( X e. A /\ N e. A ) ) -> ( ( F ` X ) = ( F ` N ) -> X = N ) ) | 
						
							| 15 | 8 9 13 14 | syl12anc |  |-  ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) -> ( ( F ` X ) = ( F ` N ) -> X = N ) ) | 
						
							| 16 | 7 15 | sylbird |  |-  ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) -> ( ( F ` X ) = .0. -> X = N ) ) | 
						
							| 17 |  | fveq2 |  |-  ( X = N -> ( F ` X ) = ( F ` N ) ) | 
						
							| 18 | 17 6 | sylan9eqr |  |-  ( ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) /\ X = N ) -> ( F ` X ) = .0. ) | 
						
							| 19 | 18 | ex |  |-  ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) -> ( X = N -> ( F ` X ) = .0. ) ) | 
						
							| 20 | 16 19 | impbid |  |-  ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) -> ( ( F ` X ) = .0. <-> X = N ) ) |