Step |
Hyp |
Ref |
Expression |
1 |
|
resexg |
|- ( F e. V -> ( F |` C ) e. _V ) |
2 |
1
|
3ad2ant3 |
|- ( ( F : A -1-1-> B /\ C C_ A /\ F e. V ) -> ( F |` C ) e. _V ) |
3 |
|
f1ores |
|- ( ( F : A -1-1-> B /\ C C_ A ) -> ( F |` C ) : C -1-1-onto-> ( F " C ) ) |
4 |
3
|
3adant3 |
|- ( ( F : A -1-1-> B /\ C C_ A /\ F e. V ) -> ( F |` C ) : C -1-1-onto-> ( F " C ) ) |
5 |
|
f1oen3g |
|- ( ( ( F |` C ) e. _V /\ ( F |` C ) : C -1-1-onto-> ( F " C ) ) -> C ~~ ( F " C ) ) |
6 |
2 4 5
|
syl2anc |
|- ( ( F : A -1-1-> B /\ C C_ A /\ F e. V ) -> C ~~ ( F " C ) ) |