| Step |
Hyp |
Ref |
Expression |
| 1 |
|
f1ores |
|- ( ( F : A -1-1-> B /\ C C_ A ) -> ( F |` C ) : C -1-1-onto-> ( F " C ) ) |
| 2 |
|
f1oenfi |
|- ( ( C e. Fin /\ ( F |` C ) : C -1-1-onto-> ( F " C ) ) -> C ~~ ( F " C ) ) |
| 3 |
|
ensymfib |
|- ( C e. Fin -> ( C ~~ ( F " C ) <-> ( F " C ) ~~ C ) ) |
| 4 |
3
|
adantr |
|- ( ( C e. Fin /\ ( F |` C ) : C -1-1-onto-> ( F " C ) ) -> ( C ~~ ( F " C ) <-> ( F " C ) ~~ C ) ) |
| 5 |
2 4
|
mpbid |
|- ( ( C e. Fin /\ ( F |` C ) : C -1-1-onto-> ( F " C ) ) -> ( F " C ) ~~ C ) |
| 6 |
1 5
|
sylan2 |
|- ( ( C e. Fin /\ ( F : A -1-1-> B /\ C C_ A ) ) -> ( F " C ) ~~ C ) |
| 7 |
6
|
3impb |
|- ( ( C e. Fin /\ F : A -1-1-> B /\ C C_ A ) -> ( F " C ) ~~ C ) |
| 8 |
7
|
3coml |
|- ( ( F : A -1-1-> B /\ C C_ A /\ C e. Fin ) -> ( F " C ) ~~ C ) |