Metamath Proof Explorer


Theorem f1imaeng

Description: If a function is one-to-one, then the image of a subset of its domain under it is equinumerous to the subset. (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion f1imaeng
|- ( ( F : A -1-1-> B /\ C C_ A /\ C e. V ) -> ( F " C ) ~~ C )

Proof

Step Hyp Ref Expression
1 f1ores
 |-  ( ( F : A -1-1-> B /\ C C_ A ) -> ( F |` C ) : C -1-1-onto-> ( F " C ) )
2 f1oeng
 |-  ( ( C e. V /\ ( F |` C ) : C -1-1-onto-> ( F " C ) ) -> C ~~ ( F " C ) )
3 2 ancoms
 |-  ( ( ( F |` C ) : C -1-1-onto-> ( F " C ) /\ C e. V ) -> C ~~ ( F " C ) )
4 1 3 stoic3
 |-  ( ( F : A -1-1-> B /\ C C_ A /\ C e. V ) -> C ~~ ( F " C ) )
5 4 ensymd
 |-  ( ( F : A -1-1-> B /\ C C_ A /\ C e. V ) -> ( F " C ) ~~ C )