Step |
Hyp |
Ref |
Expression |
1 |
|
f1imass |
|- ( ( F : A -1-1-> B /\ ( C C_ A /\ D C_ A ) ) -> ( ( F " C ) C_ ( F " D ) <-> C C_ D ) ) |
2 |
|
f1imass |
|- ( ( F : A -1-1-> B /\ ( D C_ A /\ C C_ A ) ) -> ( ( F " D ) C_ ( F " C ) <-> D C_ C ) ) |
3 |
2
|
ancom2s |
|- ( ( F : A -1-1-> B /\ ( C C_ A /\ D C_ A ) ) -> ( ( F " D ) C_ ( F " C ) <-> D C_ C ) ) |
4 |
1 3
|
anbi12d |
|- ( ( F : A -1-1-> B /\ ( C C_ A /\ D C_ A ) ) -> ( ( ( F " C ) C_ ( F " D ) /\ ( F " D ) C_ ( F " C ) ) <-> ( C C_ D /\ D C_ C ) ) ) |
5 |
|
eqss |
|- ( ( F " C ) = ( F " D ) <-> ( ( F " C ) C_ ( F " D ) /\ ( F " D ) C_ ( F " C ) ) ) |
6 |
|
eqss |
|- ( C = D <-> ( C C_ D /\ D C_ C ) ) |
7 |
4 5 6
|
3bitr4g |
|- ( ( F : A -1-1-> B /\ ( C C_ A /\ D C_ A ) ) -> ( ( F " C ) = ( F " D ) <-> C = D ) ) |