Step |
Hyp |
Ref |
Expression |
1 |
|
simplrl |
|- ( ( ( F : A -1-1-> B /\ ( C C_ A /\ D C_ A ) ) /\ ( F " C ) C_ ( F " D ) ) -> C C_ A ) |
2 |
1
|
sseld |
|- ( ( ( F : A -1-1-> B /\ ( C C_ A /\ D C_ A ) ) /\ ( F " C ) C_ ( F " D ) ) -> ( a e. C -> a e. A ) ) |
3 |
|
simplr |
|- ( ( ( ( F : A -1-1-> B /\ ( C C_ A /\ D C_ A ) ) /\ ( F " C ) C_ ( F " D ) ) /\ a e. A ) -> ( F " C ) C_ ( F " D ) ) |
4 |
3
|
sseld |
|- ( ( ( ( F : A -1-1-> B /\ ( C C_ A /\ D C_ A ) ) /\ ( F " C ) C_ ( F " D ) ) /\ a e. A ) -> ( ( F ` a ) e. ( F " C ) -> ( F ` a ) e. ( F " D ) ) ) |
5 |
|
simplll |
|- ( ( ( ( F : A -1-1-> B /\ ( C C_ A /\ D C_ A ) ) /\ ( F " C ) C_ ( F " D ) ) /\ a e. A ) -> F : A -1-1-> B ) |
6 |
|
simpr |
|- ( ( ( ( F : A -1-1-> B /\ ( C C_ A /\ D C_ A ) ) /\ ( F " C ) C_ ( F " D ) ) /\ a e. A ) -> a e. A ) |
7 |
|
simp1rl |
|- ( ( ( F : A -1-1-> B /\ ( C C_ A /\ D C_ A ) ) /\ ( F " C ) C_ ( F " D ) /\ a e. A ) -> C C_ A ) |
8 |
7
|
3expa |
|- ( ( ( ( F : A -1-1-> B /\ ( C C_ A /\ D C_ A ) ) /\ ( F " C ) C_ ( F " D ) ) /\ a e. A ) -> C C_ A ) |
9 |
|
f1elima |
|- ( ( F : A -1-1-> B /\ a e. A /\ C C_ A ) -> ( ( F ` a ) e. ( F " C ) <-> a e. C ) ) |
10 |
5 6 8 9
|
syl3anc |
|- ( ( ( ( F : A -1-1-> B /\ ( C C_ A /\ D C_ A ) ) /\ ( F " C ) C_ ( F " D ) ) /\ a e. A ) -> ( ( F ` a ) e. ( F " C ) <-> a e. C ) ) |
11 |
|
simp1rr |
|- ( ( ( F : A -1-1-> B /\ ( C C_ A /\ D C_ A ) ) /\ ( F " C ) C_ ( F " D ) /\ a e. A ) -> D C_ A ) |
12 |
11
|
3expa |
|- ( ( ( ( F : A -1-1-> B /\ ( C C_ A /\ D C_ A ) ) /\ ( F " C ) C_ ( F " D ) ) /\ a e. A ) -> D C_ A ) |
13 |
|
f1elima |
|- ( ( F : A -1-1-> B /\ a e. A /\ D C_ A ) -> ( ( F ` a ) e. ( F " D ) <-> a e. D ) ) |
14 |
5 6 12 13
|
syl3anc |
|- ( ( ( ( F : A -1-1-> B /\ ( C C_ A /\ D C_ A ) ) /\ ( F " C ) C_ ( F " D ) ) /\ a e. A ) -> ( ( F ` a ) e. ( F " D ) <-> a e. D ) ) |
15 |
4 10 14
|
3imtr3d |
|- ( ( ( ( F : A -1-1-> B /\ ( C C_ A /\ D C_ A ) ) /\ ( F " C ) C_ ( F " D ) ) /\ a e. A ) -> ( a e. C -> a e. D ) ) |
16 |
15
|
ex |
|- ( ( ( F : A -1-1-> B /\ ( C C_ A /\ D C_ A ) ) /\ ( F " C ) C_ ( F " D ) ) -> ( a e. A -> ( a e. C -> a e. D ) ) ) |
17 |
2 16
|
syld |
|- ( ( ( F : A -1-1-> B /\ ( C C_ A /\ D C_ A ) ) /\ ( F " C ) C_ ( F " D ) ) -> ( a e. C -> ( a e. C -> a e. D ) ) ) |
18 |
17
|
pm2.43d |
|- ( ( ( F : A -1-1-> B /\ ( C C_ A /\ D C_ A ) ) /\ ( F " C ) C_ ( F " D ) ) -> ( a e. C -> a e. D ) ) |
19 |
18
|
ssrdv |
|- ( ( ( F : A -1-1-> B /\ ( C C_ A /\ D C_ A ) ) /\ ( F " C ) C_ ( F " D ) ) -> C C_ D ) |
20 |
19
|
ex |
|- ( ( F : A -1-1-> B /\ ( C C_ A /\ D C_ A ) ) -> ( ( F " C ) C_ ( F " D ) -> C C_ D ) ) |
21 |
|
imass2 |
|- ( C C_ D -> ( F " C ) C_ ( F " D ) ) |
22 |
20 21
|
impbid1 |
|- ( ( F : A -1-1-> B /\ ( C C_ A /\ D C_ A ) ) -> ( ( F " C ) C_ ( F " D ) <-> C C_ D ) ) |