| Step | Hyp | Ref | Expression | 
						
							| 1 |  | f1o3d.1 |  |-  ( ph -> F = ( x e. A |-> C ) ) | 
						
							| 2 |  | f1o3d.2 |  |-  ( ( ph /\ x e. A ) -> C e. B ) | 
						
							| 3 |  | f1o3d.3 |  |-  ( ( ph /\ y e. B ) -> D e. A ) | 
						
							| 4 |  | f1o3d.4 |  |-  ( ( ph /\ ( x e. A /\ y e. B ) ) -> ( x = D <-> y = C ) ) | 
						
							| 5 | 2 | ralrimiva |  |-  ( ph -> A. x e. A C e. B ) | 
						
							| 6 |  | eqid |  |-  ( x e. A |-> C ) = ( x e. A |-> C ) | 
						
							| 7 | 6 | fnmpt |  |-  ( A. x e. A C e. B -> ( x e. A |-> C ) Fn A ) | 
						
							| 8 | 5 7 | syl |  |-  ( ph -> ( x e. A |-> C ) Fn A ) | 
						
							| 9 | 1 | fneq1d |  |-  ( ph -> ( F Fn A <-> ( x e. A |-> C ) Fn A ) ) | 
						
							| 10 | 8 9 | mpbird |  |-  ( ph -> F Fn A ) | 
						
							| 11 | 3 | ralrimiva |  |-  ( ph -> A. y e. B D e. A ) | 
						
							| 12 |  | eqid |  |-  ( y e. B |-> D ) = ( y e. B |-> D ) | 
						
							| 13 | 12 | fnmpt |  |-  ( A. y e. B D e. A -> ( y e. B |-> D ) Fn B ) | 
						
							| 14 | 11 13 | syl |  |-  ( ph -> ( y e. B |-> D ) Fn B ) | 
						
							| 15 |  | eleq1a |  |-  ( C e. B -> ( y = C -> y e. B ) ) | 
						
							| 16 | 2 15 | syl |  |-  ( ( ph /\ x e. A ) -> ( y = C -> y e. B ) ) | 
						
							| 17 | 16 | impr |  |-  ( ( ph /\ ( x e. A /\ y = C ) ) -> y e. B ) | 
						
							| 18 | 4 | biimpar |  |-  ( ( ( ph /\ ( x e. A /\ y e. B ) ) /\ y = C ) -> x = D ) | 
						
							| 19 | 18 | exp42 |  |-  ( ph -> ( x e. A -> ( y e. B -> ( y = C -> x = D ) ) ) ) | 
						
							| 20 | 19 | com34 |  |-  ( ph -> ( x e. A -> ( y = C -> ( y e. B -> x = D ) ) ) ) | 
						
							| 21 | 20 | imp32 |  |-  ( ( ph /\ ( x e. A /\ y = C ) ) -> ( y e. B -> x = D ) ) | 
						
							| 22 | 17 21 | jcai |  |-  ( ( ph /\ ( x e. A /\ y = C ) ) -> ( y e. B /\ x = D ) ) | 
						
							| 23 |  | eleq1a |  |-  ( D e. A -> ( x = D -> x e. A ) ) | 
						
							| 24 | 3 23 | syl |  |-  ( ( ph /\ y e. B ) -> ( x = D -> x e. A ) ) | 
						
							| 25 | 24 | impr |  |-  ( ( ph /\ ( y e. B /\ x = D ) ) -> x e. A ) | 
						
							| 26 | 4 | biimpa |  |-  ( ( ( ph /\ ( x e. A /\ y e. B ) ) /\ x = D ) -> y = C ) | 
						
							| 27 | 26 | exp42 |  |-  ( ph -> ( x e. A -> ( y e. B -> ( x = D -> y = C ) ) ) ) | 
						
							| 28 | 27 | com23 |  |-  ( ph -> ( y e. B -> ( x e. A -> ( x = D -> y = C ) ) ) ) | 
						
							| 29 | 28 | com34 |  |-  ( ph -> ( y e. B -> ( x = D -> ( x e. A -> y = C ) ) ) ) | 
						
							| 30 | 29 | imp32 |  |-  ( ( ph /\ ( y e. B /\ x = D ) ) -> ( x e. A -> y = C ) ) | 
						
							| 31 | 25 30 | jcai |  |-  ( ( ph /\ ( y e. B /\ x = D ) ) -> ( x e. A /\ y = C ) ) | 
						
							| 32 | 22 31 | impbida |  |-  ( ph -> ( ( x e. A /\ y = C ) <-> ( y e. B /\ x = D ) ) ) | 
						
							| 33 | 32 | opabbidv |  |-  ( ph -> { <. y , x >. | ( x e. A /\ y = C ) } = { <. y , x >. | ( y e. B /\ x = D ) } ) | 
						
							| 34 |  | df-mpt |  |-  ( x e. A |-> C ) = { <. x , y >. | ( x e. A /\ y = C ) } | 
						
							| 35 | 1 34 | eqtrdi |  |-  ( ph -> F = { <. x , y >. | ( x e. A /\ y = C ) } ) | 
						
							| 36 | 35 | cnveqd |  |-  ( ph -> `' F = `' { <. x , y >. | ( x e. A /\ y = C ) } ) | 
						
							| 37 |  | cnvopab |  |-  `' { <. x , y >. | ( x e. A /\ y = C ) } = { <. y , x >. | ( x e. A /\ y = C ) } | 
						
							| 38 | 36 37 | eqtrdi |  |-  ( ph -> `' F = { <. y , x >. | ( x e. A /\ y = C ) } ) | 
						
							| 39 |  | df-mpt |  |-  ( y e. B |-> D ) = { <. y , x >. | ( y e. B /\ x = D ) } | 
						
							| 40 | 39 | a1i |  |-  ( ph -> ( y e. B |-> D ) = { <. y , x >. | ( y e. B /\ x = D ) } ) | 
						
							| 41 | 33 38 40 | 3eqtr4d |  |-  ( ph -> `' F = ( y e. B |-> D ) ) | 
						
							| 42 | 41 | fneq1d |  |-  ( ph -> ( `' F Fn B <-> ( y e. B |-> D ) Fn B ) ) | 
						
							| 43 | 14 42 | mpbird |  |-  ( ph -> `' F Fn B ) | 
						
							| 44 |  | dff1o4 |  |-  ( F : A -1-1-onto-> B <-> ( F Fn A /\ `' F Fn B ) ) | 
						
							| 45 | 10 43 44 | sylanbrc |  |-  ( ph -> F : A -1-1-onto-> B ) | 
						
							| 46 | 45 41 | jca |  |-  ( ph -> ( F : A -1-1-onto-> B /\ `' F = ( y e. B |-> D ) ) ) |