Metamath Proof Explorer


Theorem f1oabexg

Description: The class of all 1-1-onto functions mapping one set to another is a set. (Contributed by Paul Chapman, 25-Feb-2008) (Proof shortened by AV, 9-Jun-2025)

Ref Expression
Hypothesis f1oabexg.1
|- F = { f | ( f : A -1-1-onto-> B /\ ph ) }
Assertion f1oabexg
|- ( ( A e. C /\ B e. D ) -> F e. _V )

Proof

Step Hyp Ref Expression
1 f1oabexg.1
 |-  F = { f | ( f : A -1-1-onto-> B /\ ph ) }
2 elex
 |-  ( A e. C -> A e. _V )
3 elex
 |-  ( B e. D -> B e. _V )
4 f1of
 |-  ( f : A -1-1-onto-> B -> f : A --> B )
5 4 ad2antrl
 |-  ( ( ( A e. _V /\ B e. _V ) /\ ( f : A -1-1-onto-> B /\ ph ) ) -> f : A --> B )
6 simpl
 |-  ( ( A e. _V /\ B e. _V ) -> A e. _V )
7 simpr
 |-  ( ( A e. _V /\ B e. _V ) -> B e. _V )
8 5 6 7 fabexd
 |-  ( ( A e. _V /\ B e. _V ) -> { f | ( f : A -1-1-onto-> B /\ ph ) } e. _V )
9 1 8 eqeltrid
 |-  ( ( A e. _V /\ B e. _V ) -> F e. _V )
10 2 3 9 syl2an
 |-  ( ( A e. C /\ B e. D ) -> F e. _V )