Step |
Hyp |
Ref |
Expression |
1 |
|
f1od.1 |
|- F = ( x e. A |-> C ) |
2 |
|
f1o2d.2 |
|- ( ( ph /\ x e. A ) -> C e. B ) |
3 |
|
f1o2d.3 |
|- ( ( ph /\ y e. B ) -> D e. A ) |
4 |
|
f1o2d.4 |
|- ( ( ph /\ ( x e. A /\ y e. B ) ) -> ( x = D <-> y = C ) ) |
5 |
|
eleq1a |
|- ( C e. B -> ( y = C -> y e. B ) ) |
6 |
2 5
|
syl |
|- ( ( ph /\ x e. A ) -> ( y = C -> y e. B ) ) |
7 |
6
|
impr |
|- ( ( ph /\ ( x e. A /\ y = C ) ) -> y e. B ) |
8 |
4
|
biimpar |
|- ( ( ( ph /\ ( x e. A /\ y e. B ) ) /\ y = C ) -> x = D ) |
9 |
8
|
exp42 |
|- ( ph -> ( x e. A -> ( y e. B -> ( y = C -> x = D ) ) ) ) |
10 |
9
|
com34 |
|- ( ph -> ( x e. A -> ( y = C -> ( y e. B -> x = D ) ) ) ) |
11 |
10
|
imp32 |
|- ( ( ph /\ ( x e. A /\ y = C ) ) -> ( y e. B -> x = D ) ) |
12 |
7 11
|
jcai |
|- ( ( ph /\ ( x e. A /\ y = C ) ) -> ( y e. B /\ x = D ) ) |
13 |
|
eleq1a |
|- ( D e. A -> ( x = D -> x e. A ) ) |
14 |
3 13
|
syl |
|- ( ( ph /\ y e. B ) -> ( x = D -> x e. A ) ) |
15 |
14
|
impr |
|- ( ( ph /\ ( y e. B /\ x = D ) ) -> x e. A ) |
16 |
4
|
biimpa |
|- ( ( ( ph /\ ( x e. A /\ y e. B ) ) /\ x = D ) -> y = C ) |
17 |
16
|
exp42 |
|- ( ph -> ( x e. A -> ( y e. B -> ( x = D -> y = C ) ) ) ) |
18 |
17
|
com23 |
|- ( ph -> ( y e. B -> ( x e. A -> ( x = D -> y = C ) ) ) ) |
19 |
18
|
com34 |
|- ( ph -> ( y e. B -> ( x = D -> ( x e. A -> y = C ) ) ) ) |
20 |
19
|
imp32 |
|- ( ( ph /\ ( y e. B /\ x = D ) ) -> ( x e. A -> y = C ) ) |
21 |
15 20
|
jcai |
|- ( ( ph /\ ( y e. B /\ x = D ) ) -> ( x e. A /\ y = C ) ) |
22 |
12 21
|
impbida |
|- ( ph -> ( ( x e. A /\ y = C ) <-> ( y e. B /\ x = D ) ) ) |
23 |
1 2 3 22
|
f1ocnvd |
|- ( ph -> ( F : A -1-1-onto-> B /\ `' F = ( y e. B |-> D ) ) ) |