Metamath Proof Explorer


Theorem f1ocnvb

Description: A relation is a one-to-one onto function iff its converse is a one-to-one onto function with domain and range interchanged. (Contributed by NM, 8-Dec-2003)

Ref Expression
Assertion f1ocnvb
|- ( Rel F -> ( F : A -1-1-onto-> B <-> `' F : B -1-1-onto-> A ) )

Proof

Step Hyp Ref Expression
1 f1ocnv
 |-  ( F : A -1-1-onto-> B -> `' F : B -1-1-onto-> A )
2 f1ocnv
 |-  ( `' F : B -1-1-onto-> A -> `' `' F : A -1-1-onto-> B )
3 dfrel2
 |-  ( Rel F <-> `' `' F = F )
4 f1oeq1
 |-  ( `' `' F = F -> ( `' `' F : A -1-1-onto-> B <-> F : A -1-1-onto-> B ) )
5 3 4 sylbi
 |-  ( Rel F -> ( `' `' F : A -1-1-onto-> B <-> F : A -1-1-onto-> B ) )
6 2 5 syl5ib
 |-  ( Rel F -> ( `' F : B -1-1-onto-> A -> F : A -1-1-onto-> B ) )
7 1 6 impbid2
 |-  ( Rel F -> ( F : A -1-1-onto-> B <-> `' F : B -1-1-onto-> A ) )