Step |
Hyp |
Ref |
Expression |
1 |
|
f1ocnv |
|- ( F : A -1-1-onto-> B -> `' F : B -1-1-onto-> A ) |
2 |
|
f1ocnv |
|- ( `' F : B -1-1-onto-> A -> `' `' F : A -1-1-onto-> B ) |
3 |
|
dfrel2 |
|- ( Rel F <-> `' `' F = F ) |
4 |
|
f1oeq1 |
|- ( `' `' F = F -> ( `' `' F : A -1-1-onto-> B <-> F : A -1-1-onto-> B ) ) |
5 |
3 4
|
sylbi |
|- ( Rel F -> ( `' `' F : A -1-1-onto-> B <-> F : A -1-1-onto-> B ) ) |
6 |
2 5
|
syl5ib |
|- ( Rel F -> ( `' F : B -1-1-onto-> A -> F : A -1-1-onto-> B ) ) |
7 |
1 6
|
impbid2 |
|- ( Rel F -> ( F : A -1-1-onto-> B <-> `' F : B -1-1-onto-> A ) ) |