Metamath Proof Explorer


Theorem f1ocnvdm

Description: The value of the converse of a one-to-one onto function belongs to its domain. (Contributed by NM, 26-May-2006)

Ref Expression
Assertion f1ocnvdm
|- ( ( F : A -1-1-onto-> B /\ C e. B ) -> ( `' F ` C ) e. A )

Proof

Step Hyp Ref Expression
1 f1ocnv
 |-  ( F : A -1-1-onto-> B -> `' F : B -1-1-onto-> A )
2 f1of
 |-  ( `' F : B -1-1-onto-> A -> `' F : B --> A )
3 1 2 syl
 |-  ( F : A -1-1-onto-> B -> `' F : B --> A )
4 3 ffvelrnda
 |-  ( ( F : A -1-1-onto-> B /\ C e. B ) -> ( `' F ` C ) e. A )