Description: Relationship between the value of a one-to-one onto function and the value of its converse. (Contributed by Raph Levien, 10-Apr-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | f1ocnvfv | |- ( ( F : A -1-1-onto-> B /\ C e. A ) -> ( ( F ` C ) = D -> ( `' F ` D ) = C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 | |- ( D = ( F ` C ) -> ( `' F ` D ) = ( `' F ` ( F ` C ) ) ) |
|
2 | 1 | eqcoms | |- ( ( F ` C ) = D -> ( `' F ` D ) = ( `' F ` ( F ` C ) ) ) |
3 | f1ocnvfv1 | |- ( ( F : A -1-1-onto-> B /\ C e. A ) -> ( `' F ` ( F ` C ) ) = C ) |
|
4 | 3 | eqeq2d | |- ( ( F : A -1-1-onto-> B /\ C e. A ) -> ( ( `' F ` D ) = ( `' F ` ( F ` C ) ) <-> ( `' F ` D ) = C ) ) |
5 | 2 4 | syl5ib | |- ( ( F : A -1-1-onto-> B /\ C e. A ) -> ( ( F ` C ) = D -> ( `' F ` D ) = C ) ) |