Metamath Proof Explorer


Theorem f1ocnvfv

Description: Relationship between the value of a one-to-one onto function and the value of its converse. (Contributed by Raph Levien, 10-Apr-2004)

Ref Expression
Assertion f1ocnvfv
|- ( ( F : A -1-1-onto-> B /\ C e. A ) -> ( ( F ` C ) = D -> ( `' F ` D ) = C ) )

Proof

Step Hyp Ref Expression
1 fveq2
 |-  ( D = ( F ` C ) -> ( `' F ` D ) = ( `' F ` ( F ` C ) ) )
2 1 eqcoms
 |-  ( ( F ` C ) = D -> ( `' F ` D ) = ( `' F ` ( F ` C ) ) )
3 f1ocnvfv1
 |-  ( ( F : A -1-1-onto-> B /\ C e. A ) -> ( `' F ` ( F ` C ) ) = C )
4 3 eqeq2d
 |-  ( ( F : A -1-1-onto-> B /\ C e. A ) -> ( ( `' F ` D ) = ( `' F ` ( F ` C ) ) <-> ( `' F ` D ) = C ) )
5 2 4 syl5ib
 |-  ( ( F : A -1-1-onto-> B /\ C e. A ) -> ( ( F ` C ) = D -> ( `' F ` D ) = C ) )