Step |
Hyp |
Ref |
Expression |
1 |
|
f1ococnv1 |
|- ( F : A -1-1-onto-> B -> ( `' F o. F ) = ( _I |` A ) ) |
2 |
1
|
fveq1d |
|- ( F : A -1-1-onto-> B -> ( ( `' F o. F ) ` C ) = ( ( _I |` A ) ` C ) ) |
3 |
2
|
adantr |
|- ( ( F : A -1-1-onto-> B /\ C e. A ) -> ( ( `' F o. F ) ` C ) = ( ( _I |` A ) ` C ) ) |
4 |
|
f1of |
|- ( F : A -1-1-onto-> B -> F : A --> B ) |
5 |
|
fvco3 |
|- ( ( F : A --> B /\ C e. A ) -> ( ( `' F o. F ) ` C ) = ( `' F ` ( F ` C ) ) ) |
6 |
4 5
|
sylan |
|- ( ( F : A -1-1-onto-> B /\ C e. A ) -> ( ( `' F o. F ) ` C ) = ( `' F ` ( F ` C ) ) ) |
7 |
|
fvresi |
|- ( C e. A -> ( ( _I |` A ) ` C ) = C ) |
8 |
7
|
adantl |
|- ( ( F : A -1-1-onto-> B /\ C e. A ) -> ( ( _I |` A ) ` C ) = C ) |
9 |
3 6 8
|
3eqtr3d |
|- ( ( F : A -1-1-onto-> B /\ C e. A ) -> ( `' F ` ( F ` C ) ) = C ) |