Step |
Hyp |
Ref |
Expression |
1 |
|
f1ococnv2 |
|- ( F : A -1-1-onto-> B -> ( F o. `' F ) = ( _I |` B ) ) |
2 |
1
|
fveq1d |
|- ( F : A -1-1-onto-> B -> ( ( F o. `' F ) ` C ) = ( ( _I |` B ) ` C ) ) |
3 |
2
|
adantr |
|- ( ( F : A -1-1-onto-> B /\ C e. B ) -> ( ( F o. `' F ) ` C ) = ( ( _I |` B ) ` C ) ) |
4 |
|
f1ocnv |
|- ( F : A -1-1-onto-> B -> `' F : B -1-1-onto-> A ) |
5 |
|
f1of |
|- ( `' F : B -1-1-onto-> A -> `' F : B --> A ) |
6 |
4 5
|
syl |
|- ( F : A -1-1-onto-> B -> `' F : B --> A ) |
7 |
|
fvco3 |
|- ( ( `' F : B --> A /\ C e. B ) -> ( ( F o. `' F ) ` C ) = ( F ` ( `' F ` C ) ) ) |
8 |
6 7
|
sylan |
|- ( ( F : A -1-1-onto-> B /\ C e. B ) -> ( ( F o. `' F ) ` C ) = ( F ` ( `' F ` C ) ) ) |
9 |
|
fvresi |
|- ( C e. B -> ( ( _I |` B ) ` C ) = C ) |
10 |
9
|
adantl |
|- ( ( F : A -1-1-onto-> B /\ C e. B ) -> ( ( _I |` B ) ` C ) = C ) |
11 |
3 8 10
|
3eqtr3d |
|- ( ( F : A -1-1-onto-> B /\ C e. B ) -> ( F ` ( `' F ` C ) ) = C ) |