| Step | Hyp | Ref | Expression | 
						
							| 1 |  | f1ocnvdm |  |-  ( ( F : A -1-1-onto-> B /\ C e. B ) -> ( `' F ` C ) e. A ) | 
						
							| 2 |  | f1ocnvfvb |  |-  ( ( F : A -1-1-onto-> B /\ x e. A /\ C e. B ) -> ( ( F ` x ) = C <-> ( `' F ` C ) = x ) ) | 
						
							| 3 | 2 | 3expa |  |-  ( ( ( F : A -1-1-onto-> B /\ x e. A ) /\ C e. B ) -> ( ( F ` x ) = C <-> ( `' F ` C ) = x ) ) | 
						
							| 4 | 3 | an32s |  |-  ( ( ( F : A -1-1-onto-> B /\ C e. B ) /\ x e. A ) -> ( ( F ` x ) = C <-> ( `' F ` C ) = x ) ) | 
						
							| 5 |  | eqcom |  |-  ( x = ( `' F ` C ) <-> ( `' F ` C ) = x ) | 
						
							| 6 | 4 5 | bitr4di |  |-  ( ( ( F : A -1-1-onto-> B /\ C e. B ) /\ x e. A ) -> ( ( F ` x ) = C <-> x = ( `' F ` C ) ) ) | 
						
							| 7 | 1 6 | riota5 |  |-  ( ( F : A -1-1-onto-> B /\ C e. B ) -> ( iota_ x e. A ( F ` x ) = C ) = ( `' F ` C ) ) | 
						
							| 8 | 7 | eqcomd |  |-  ( ( F : A -1-1-onto-> B /\ C e. B ) -> ( `' F ` C ) = ( iota_ x e. A ( F ` x ) = C ) ) |