Step |
Hyp |
Ref |
Expression |
1 |
|
f1ocnvdm |
|- ( ( F : A -1-1-onto-> B /\ C e. B ) -> ( `' F ` C ) e. A ) |
2 |
|
f1ocnvfvb |
|- ( ( F : A -1-1-onto-> B /\ x e. A /\ C e. B ) -> ( ( F ` x ) = C <-> ( `' F ` C ) = x ) ) |
3 |
2
|
3expa |
|- ( ( ( F : A -1-1-onto-> B /\ x e. A ) /\ C e. B ) -> ( ( F ` x ) = C <-> ( `' F ` C ) = x ) ) |
4 |
3
|
an32s |
|- ( ( ( F : A -1-1-onto-> B /\ C e. B ) /\ x e. A ) -> ( ( F ` x ) = C <-> ( `' F ` C ) = x ) ) |
5 |
|
eqcom |
|- ( x = ( `' F ` C ) <-> ( `' F ` C ) = x ) |
6 |
4 5
|
bitr4di |
|- ( ( ( F : A -1-1-onto-> B /\ C e. B ) /\ x e. A ) -> ( ( F ` x ) = C <-> x = ( `' F ` C ) ) ) |
7 |
1 6
|
riota5 |
|- ( ( F : A -1-1-onto-> B /\ C e. B ) -> ( iota_ x e. A ( F ` x ) = C ) = ( `' F ` C ) ) |
8 |
7
|
eqcomd |
|- ( ( F : A -1-1-onto-> B /\ C e. B ) -> ( `' F ` C ) = ( iota_ x e. A ( F ` x ) = C ) ) |