| Step |
Hyp |
Ref |
Expression |
| 1 |
|
f1ocnvfv |
|- ( ( F : A -1-1-onto-> B /\ C e. A ) -> ( ( F ` C ) = D -> ( `' F ` D ) = C ) ) |
| 2 |
1
|
3adant3 |
|- ( ( F : A -1-1-onto-> B /\ C e. A /\ D e. B ) -> ( ( F ` C ) = D -> ( `' F ` D ) = C ) ) |
| 3 |
|
fveq2 |
|- ( C = ( `' F ` D ) -> ( F ` C ) = ( F ` ( `' F ` D ) ) ) |
| 4 |
3
|
eqcoms |
|- ( ( `' F ` D ) = C -> ( F ` C ) = ( F ` ( `' F ` D ) ) ) |
| 5 |
|
f1ocnvfv2 |
|- ( ( F : A -1-1-onto-> B /\ D e. B ) -> ( F ` ( `' F ` D ) ) = D ) |
| 6 |
5
|
eqeq2d |
|- ( ( F : A -1-1-onto-> B /\ D e. B ) -> ( ( F ` C ) = ( F ` ( `' F ` D ) ) <-> ( F ` C ) = D ) ) |
| 7 |
4 6
|
imbitrid |
|- ( ( F : A -1-1-onto-> B /\ D e. B ) -> ( ( `' F ` D ) = C -> ( F ` C ) = D ) ) |
| 8 |
7
|
3adant2 |
|- ( ( F : A -1-1-onto-> B /\ C e. A /\ D e. B ) -> ( ( `' F ` D ) = C -> ( F ` C ) = D ) ) |
| 9 |
2 8
|
impbid |
|- ( ( F : A -1-1-onto-> B /\ C e. A /\ D e. B ) -> ( ( F ` C ) = D <-> ( `' F ` D ) = C ) ) |