Step |
Hyp |
Ref |
Expression |
1 |
|
f1f1orn |
|- ( F : A -1-1-> B -> F : A -1-1-onto-> ran F ) |
2 |
|
f1ocnv |
|- ( F : A -1-1-onto-> ran F -> `' F : ran F -1-1-onto-> A ) |
3 |
|
f1of1 |
|- ( `' F : ran F -1-1-onto-> A -> `' F : ran F -1-1-> A ) |
4 |
|
f1veqaeq |
|- ( ( `' F : ran F -1-1-> A /\ ( C e. ran F /\ D e. ran F ) ) -> ( ( `' F ` C ) = ( `' F ` D ) -> C = D ) ) |
5 |
4
|
ex |
|- ( `' F : ran F -1-1-> A -> ( ( C e. ran F /\ D e. ran F ) -> ( ( `' F ` C ) = ( `' F ` D ) -> C = D ) ) ) |
6 |
1 2 3 5
|
4syl |
|- ( F : A -1-1-> B -> ( ( C e. ran F /\ D e. ran F ) -> ( ( `' F ` C ) = ( `' F ` D ) -> C = D ) ) ) |
7 |
6
|
imp |
|- ( ( F : A -1-1-> B /\ ( C e. ran F /\ D e. ran F ) ) -> ( ( `' F ` C ) = ( `' F ` D ) -> C = D ) ) |