Metamath Proof Explorer


Theorem f1ococnv2

Description: The composition of a one-to-one onto function and its converse equals the identity relation restricted to the function's range. (Contributed by NM, 13-Dec-2003) (Proof shortened by Stefan O'Rear, 12-Feb-2015)

Ref Expression
Assertion f1ococnv2
|- ( F : A -1-1-onto-> B -> ( F o. `' F ) = ( _I |` B ) )

Proof

Step Hyp Ref Expression
1 f1ofo
 |-  ( F : A -1-1-onto-> B -> F : A -onto-> B )
2 fococnv2
 |-  ( F : A -onto-> B -> ( F o. `' F ) = ( _I |` B ) )
3 1 2 syl
 |-  ( F : A -1-1-onto-> B -> ( F o. `' F ) = ( _I |` B ) )