| Step | Hyp | Ref | Expression | 
						
							| 1 |  | f1ocpbl.f |  |-  ( ph -> F : V -1-1-onto-> X ) | 
						
							| 2 | 1 | f1ocpbllem |  |-  ( ( ph /\ ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) -> ( ( ( F ` A ) = ( F ` C ) /\ ( F ` B ) = ( F ` D ) ) <-> ( A = C /\ B = D ) ) ) | 
						
							| 3 |  | oveq12 |  |-  ( ( A = C /\ B = D ) -> ( A .+ B ) = ( C .+ D ) ) | 
						
							| 4 | 3 | fveq2d |  |-  ( ( A = C /\ B = D ) -> ( F ` ( A .+ B ) ) = ( F ` ( C .+ D ) ) ) | 
						
							| 5 | 2 4 | biimtrdi |  |-  ( ( ph /\ ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) -> ( ( ( F ` A ) = ( F ` C ) /\ ( F ` B ) = ( F ` D ) ) -> ( F ` ( A .+ B ) ) = ( F ` ( C .+ D ) ) ) ) |