Step |
Hyp |
Ref |
Expression |
1 |
|
f1ocnv |
|- ( F : A -1-1-onto-> B -> `' F : B -1-1-onto-> A ) |
2 |
|
f1ofn |
|- ( `' F : B -1-1-onto-> A -> `' F Fn B ) |
3 |
|
fnfi |
|- ( ( `' F Fn B /\ B e. Fin ) -> `' F e. Fin ) |
4 |
2 3
|
sylan |
|- ( ( `' F : B -1-1-onto-> A /\ B e. Fin ) -> `' F e. Fin ) |
5 |
1 4
|
sylan |
|- ( ( F : A -1-1-onto-> B /\ B e. Fin ) -> `' F e. Fin ) |
6 |
5
|
ancoms |
|- ( ( B e. Fin /\ F : A -1-1-onto-> B ) -> `' F e. Fin ) |
7 |
|
cnvfi |
|- ( `' F e. Fin -> `' `' F e. Fin ) |
8 |
|
f1orel |
|- ( F : A -1-1-onto-> B -> Rel F ) |
9 |
|
dfrel2 |
|- ( Rel F <-> `' `' F = F ) |
10 |
8 9
|
sylib |
|- ( F : A -1-1-onto-> B -> `' `' F = F ) |
11 |
10
|
eleq1d |
|- ( F : A -1-1-onto-> B -> ( `' `' F e. Fin <-> F e. Fin ) ) |
12 |
11
|
biimpac |
|- ( ( `' `' F e. Fin /\ F : A -1-1-onto-> B ) -> F e. Fin ) |
13 |
7 12
|
sylan |
|- ( ( `' F e. Fin /\ F : A -1-1-onto-> B ) -> F e. Fin ) |
14 |
6 13
|
sylancom |
|- ( ( B e. Fin /\ F : A -1-1-onto-> B ) -> F e. Fin ) |
15 |
|
f1oen3g |
|- ( ( F e. Fin /\ F : A -1-1-onto-> B ) -> A ~~ B ) |
16 |
14 15
|
sylancom |
|- ( ( B e. Fin /\ F : A -1-1-onto-> B ) -> A ~~ B ) |