Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1oeq1 | |- ( F = G -> ( F : A -1-1-onto-> B <-> G : A -1-1-onto-> B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1eq1 | |- ( F = G -> ( F : A -1-1-> B <-> G : A -1-1-> B ) ) |
|
| 2 | foeq1 | |- ( F = G -> ( F : A -onto-> B <-> G : A -onto-> B ) ) |
|
| 3 | 1 2 | anbi12d | |- ( F = G -> ( ( F : A -1-1-> B /\ F : A -onto-> B ) <-> ( G : A -1-1-> B /\ G : A -onto-> B ) ) ) |
| 4 | df-f1o | |- ( F : A -1-1-onto-> B <-> ( F : A -1-1-> B /\ F : A -onto-> B ) ) |
|
| 5 | df-f1o | |- ( G : A -1-1-onto-> B <-> ( G : A -1-1-> B /\ G : A -onto-> B ) ) |
|
| 6 | 3 4 5 | 3bitr4g | |- ( F = G -> ( F : A -1-1-onto-> B <-> G : A -1-1-onto-> B ) ) |