Metamath Proof Explorer


Theorem f1oeq123d

Description: Equality deduction for one-to-one onto functions. (Contributed by Mario Carneiro, 27-Jan-2017)

Ref Expression
Hypotheses f1eq123d.1
|- ( ph -> F = G )
f1eq123d.2
|- ( ph -> A = B )
f1eq123d.3
|- ( ph -> C = D )
Assertion f1oeq123d
|- ( ph -> ( F : A -1-1-onto-> C <-> G : B -1-1-onto-> D ) )

Proof

Step Hyp Ref Expression
1 f1eq123d.1
 |-  ( ph -> F = G )
2 f1eq123d.2
 |-  ( ph -> A = B )
3 f1eq123d.3
 |-  ( ph -> C = D )
4 f1oeq1
 |-  ( F = G -> ( F : A -1-1-onto-> C <-> G : A -1-1-onto-> C ) )
5 1 4 syl
 |-  ( ph -> ( F : A -1-1-onto-> C <-> G : A -1-1-onto-> C ) )
6 f1oeq2
 |-  ( A = B -> ( G : A -1-1-onto-> C <-> G : B -1-1-onto-> C ) )
7 2 6 syl
 |-  ( ph -> ( G : A -1-1-onto-> C <-> G : B -1-1-onto-> C ) )
8 f1oeq3
 |-  ( C = D -> ( G : B -1-1-onto-> C <-> G : B -1-1-onto-> D ) )
9 3 8 syl
 |-  ( ph -> ( G : B -1-1-onto-> C <-> G : B -1-1-onto-> D ) )
10 5 7 9 3bitrd
 |-  ( ph -> ( F : A -1-1-onto-> C <-> G : B -1-1-onto-> D ) )