Step |
Hyp |
Ref |
Expression |
1 |
|
f1eq123d.1 |
|- ( ph -> F = G ) |
2 |
|
f1eq123d.2 |
|- ( ph -> A = B ) |
3 |
|
f1eq123d.3 |
|- ( ph -> C = D ) |
4 |
|
f1oeq1 |
|- ( F = G -> ( F : A -1-1-onto-> C <-> G : A -1-1-onto-> C ) ) |
5 |
1 4
|
syl |
|- ( ph -> ( F : A -1-1-onto-> C <-> G : A -1-1-onto-> C ) ) |
6 |
|
f1oeq2 |
|- ( A = B -> ( G : A -1-1-onto-> C <-> G : B -1-1-onto-> C ) ) |
7 |
2 6
|
syl |
|- ( ph -> ( G : A -1-1-onto-> C <-> G : B -1-1-onto-> C ) ) |
8 |
|
f1oeq3 |
|- ( C = D -> ( G : B -1-1-onto-> C <-> G : B -1-1-onto-> D ) ) |
9 |
3 8
|
syl |
|- ( ph -> ( G : B -1-1-onto-> C <-> G : B -1-1-onto-> D ) ) |
10 |
5 7 9
|
3bitrd |
|- ( ph -> ( F : A -1-1-onto-> C <-> G : B -1-1-onto-> D ) ) |