Metamath Proof Explorer


Theorem f1oeq1d

Description: Equality deduction for one-to-one onto functions. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypothesis f1oeq1d.1
|- ( ph -> F = G )
Assertion f1oeq1d
|- ( ph -> ( F : A -1-1-onto-> B <-> G : A -1-1-onto-> B ) )

Proof

Step Hyp Ref Expression
1 f1oeq1d.1
 |-  ( ph -> F = G )
2 f1oeq1
 |-  ( F = G -> ( F : A -1-1-onto-> B <-> G : A -1-1-onto-> B ) )
3 1 2 syl
 |-  ( ph -> ( F : A -1-1-onto-> B <-> G : A -1-1-onto-> B ) )