Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1oeq2 | |- ( A = B -> ( F : A -1-1-onto-> C <-> F : B -1-1-onto-> C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1eq2 | |- ( A = B -> ( F : A -1-1-> C <-> F : B -1-1-> C ) ) |
|
| 2 | foeq2 | |- ( A = B -> ( F : A -onto-> C <-> F : B -onto-> C ) ) |
|
| 3 | 1 2 | anbi12d | |- ( A = B -> ( ( F : A -1-1-> C /\ F : A -onto-> C ) <-> ( F : B -1-1-> C /\ F : B -onto-> C ) ) ) |
| 4 | df-f1o | |- ( F : A -1-1-onto-> C <-> ( F : A -1-1-> C /\ F : A -onto-> C ) ) |
|
| 5 | df-f1o | |- ( F : B -1-1-onto-> C <-> ( F : B -1-1-> C /\ F : B -onto-> C ) ) |
|
| 6 | 3 4 5 | 3bitr4g | |- ( A = B -> ( F : A -1-1-onto-> C <-> F : B -1-1-onto-> C ) ) |