Metamath Proof Explorer


Theorem f1oeq23

Description: Equality theorem for one-to-one onto functions. (Contributed by FL, 14-Jul-2012)

Ref Expression
Assertion f1oeq23
|- ( ( A = B /\ C = D ) -> ( F : A -1-1-onto-> C <-> F : B -1-1-onto-> D ) )

Proof

Step Hyp Ref Expression
1 f1oeq2
 |-  ( A = B -> ( F : A -1-1-onto-> C <-> F : B -1-1-onto-> C ) )
2 f1oeq3
 |-  ( C = D -> ( F : B -1-1-onto-> C <-> F : B -1-1-onto-> D ) )
3 1 2 sylan9bb
 |-  ( ( A = B /\ C = D ) -> ( F : A -1-1-onto-> C <-> F : B -1-1-onto-> D ) )