Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1oeq3 | |- ( A = B -> ( F : C -1-1-onto-> A <-> F : C -1-1-onto-> B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1eq3 | |- ( A = B -> ( F : C -1-1-> A <-> F : C -1-1-> B ) ) |
|
| 2 | foeq3 | |- ( A = B -> ( F : C -onto-> A <-> F : C -onto-> B ) ) |
|
| 3 | 1 2 | anbi12d | |- ( A = B -> ( ( F : C -1-1-> A /\ F : C -onto-> A ) <-> ( F : C -1-1-> B /\ F : C -onto-> B ) ) ) |
| 4 | df-f1o | |- ( F : C -1-1-onto-> A <-> ( F : C -1-1-> A /\ F : C -onto-> A ) ) |
|
| 5 | df-f1o | |- ( F : C -1-1-onto-> B <-> ( F : C -1-1-> B /\ F : C -onto-> B ) ) |
|
| 6 | 3 4 5 | 3bitr4g | |- ( A = B -> ( F : C -1-1-onto-> A <-> F : C -1-1-onto-> B ) ) |