Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997)
Ref | Expression | ||
---|---|---|---|
Assertion | f1oeq3 | |- ( A = B -> ( F : C -1-1-onto-> A <-> F : C -1-1-onto-> B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1eq3 | |- ( A = B -> ( F : C -1-1-> A <-> F : C -1-1-> B ) ) |
|
2 | foeq3 | |- ( A = B -> ( F : C -onto-> A <-> F : C -onto-> B ) ) |
|
3 | 1 2 | anbi12d | |- ( A = B -> ( ( F : C -1-1-> A /\ F : C -onto-> A ) <-> ( F : C -1-1-> B /\ F : C -onto-> B ) ) ) |
4 | df-f1o | |- ( F : C -1-1-onto-> A <-> ( F : C -1-1-> A /\ F : C -onto-> A ) ) |
|
5 | df-f1o | |- ( F : C -1-1-onto-> B <-> ( F : C -1-1-> B /\ F : C -onto-> B ) ) |
|
6 | 3 4 5 | 3bitr4g | |- ( A = B -> ( F : C -1-1-onto-> A <-> F : C -1-1-onto-> B ) ) |