| Step | Hyp | Ref | Expression | 
						
							| 1 |  | f1ocnv |  |-  ( F : A -1-1-onto-> B -> `' F : B -1-1-onto-> A ) | 
						
							| 2 |  | f1of |  |-  ( `' F : B -1-1-onto-> A -> `' F : B --> A ) | 
						
							| 3 | 1 2 | syl |  |-  ( F : A -1-1-onto-> B -> `' F : B --> A ) | 
						
							| 4 |  | feu |  |-  ( ( `' F : B --> A /\ C e. B ) -> E! x e. A <. C , x >. e. `' F ) | 
						
							| 5 | 3 4 | sylan |  |-  ( ( F : A -1-1-onto-> B /\ C e. B ) -> E! x e. A <. C , x >. e. `' F ) | 
						
							| 6 |  | f1ocnvfvb |  |-  ( ( F : A -1-1-onto-> B /\ x e. A /\ C e. B ) -> ( ( F ` x ) = C <-> ( `' F ` C ) = x ) ) | 
						
							| 7 | 6 | 3com23 |  |-  ( ( F : A -1-1-onto-> B /\ C e. B /\ x e. A ) -> ( ( F ` x ) = C <-> ( `' F ` C ) = x ) ) | 
						
							| 8 |  | dff1o4 |  |-  ( F : A -1-1-onto-> B <-> ( F Fn A /\ `' F Fn B ) ) | 
						
							| 9 | 8 | simprbi |  |-  ( F : A -1-1-onto-> B -> `' F Fn B ) | 
						
							| 10 |  | fnopfvb |  |-  ( ( `' F Fn B /\ C e. B ) -> ( ( `' F ` C ) = x <-> <. C , x >. e. `' F ) ) | 
						
							| 11 | 10 | 3adant3 |  |-  ( ( `' F Fn B /\ C e. B /\ x e. A ) -> ( ( `' F ` C ) = x <-> <. C , x >. e. `' F ) ) | 
						
							| 12 | 9 11 | syl3an1 |  |-  ( ( F : A -1-1-onto-> B /\ C e. B /\ x e. A ) -> ( ( `' F ` C ) = x <-> <. C , x >. e. `' F ) ) | 
						
							| 13 | 7 12 | bitrd |  |-  ( ( F : A -1-1-onto-> B /\ C e. B /\ x e. A ) -> ( ( F ` x ) = C <-> <. C , x >. e. `' F ) ) | 
						
							| 14 | 13 | 3expa |  |-  ( ( ( F : A -1-1-onto-> B /\ C e. B ) /\ x e. A ) -> ( ( F ` x ) = C <-> <. C , x >. e. `' F ) ) | 
						
							| 15 | 14 | reubidva |  |-  ( ( F : A -1-1-onto-> B /\ C e. B ) -> ( E! x e. A ( F ` x ) = C <-> E! x e. A <. C , x >. e. `' F ) ) | 
						
							| 16 | 5 15 | mpbird |  |-  ( ( F : A -1-1-onto-> B /\ C e. B ) -> E! x e. A ( F ` x ) = C ) |