| Step |
Hyp |
Ref |
Expression |
| 1 |
|
f1oiso2.1 |
|- S = { <. x , y >. | ( ( x e. B /\ y e. B ) /\ ( `' H ` x ) R ( `' H ` y ) ) } |
| 2 |
|
f1ocnvdm |
|- ( ( H : A -1-1-onto-> B /\ x e. B ) -> ( `' H ` x ) e. A ) |
| 3 |
2
|
adantrr |
|- ( ( H : A -1-1-onto-> B /\ ( x e. B /\ y e. B ) ) -> ( `' H ` x ) e. A ) |
| 4 |
3
|
3adant3 |
|- ( ( H : A -1-1-onto-> B /\ ( x e. B /\ y e. B ) /\ ( `' H ` x ) R ( `' H ` y ) ) -> ( `' H ` x ) e. A ) |
| 5 |
|
f1ocnvdm |
|- ( ( H : A -1-1-onto-> B /\ y e. B ) -> ( `' H ` y ) e. A ) |
| 6 |
5
|
adantrl |
|- ( ( H : A -1-1-onto-> B /\ ( x e. B /\ y e. B ) ) -> ( `' H ` y ) e. A ) |
| 7 |
6
|
3adant3 |
|- ( ( H : A -1-1-onto-> B /\ ( x e. B /\ y e. B ) /\ ( `' H ` x ) R ( `' H ` y ) ) -> ( `' H ` y ) e. A ) |
| 8 |
|
f1ocnvfv2 |
|- ( ( H : A -1-1-onto-> B /\ x e. B ) -> ( H ` ( `' H ` x ) ) = x ) |
| 9 |
8
|
eqcomd |
|- ( ( H : A -1-1-onto-> B /\ x e. B ) -> x = ( H ` ( `' H ` x ) ) ) |
| 10 |
|
f1ocnvfv2 |
|- ( ( H : A -1-1-onto-> B /\ y e. B ) -> ( H ` ( `' H ` y ) ) = y ) |
| 11 |
10
|
eqcomd |
|- ( ( H : A -1-1-onto-> B /\ y e. B ) -> y = ( H ` ( `' H ` y ) ) ) |
| 12 |
9 11
|
anim12dan |
|- ( ( H : A -1-1-onto-> B /\ ( x e. B /\ y e. B ) ) -> ( x = ( H ` ( `' H ` x ) ) /\ y = ( H ` ( `' H ` y ) ) ) ) |
| 13 |
12
|
3adant3 |
|- ( ( H : A -1-1-onto-> B /\ ( x e. B /\ y e. B ) /\ ( `' H ` x ) R ( `' H ` y ) ) -> ( x = ( H ` ( `' H ` x ) ) /\ y = ( H ` ( `' H ` y ) ) ) ) |
| 14 |
|
simp3 |
|- ( ( H : A -1-1-onto-> B /\ ( x e. B /\ y e. B ) /\ ( `' H ` x ) R ( `' H ` y ) ) -> ( `' H ` x ) R ( `' H ` y ) ) |
| 15 |
|
fveq2 |
|- ( w = ( `' H ` y ) -> ( H ` w ) = ( H ` ( `' H ` y ) ) ) |
| 16 |
15
|
eqeq2d |
|- ( w = ( `' H ` y ) -> ( y = ( H ` w ) <-> y = ( H ` ( `' H ` y ) ) ) ) |
| 17 |
16
|
anbi2d |
|- ( w = ( `' H ` y ) -> ( ( x = ( H ` ( `' H ` x ) ) /\ y = ( H ` w ) ) <-> ( x = ( H ` ( `' H ` x ) ) /\ y = ( H ` ( `' H ` y ) ) ) ) ) |
| 18 |
|
breq2 |
|- ( w = ( `' H ` y ) -> ( ( `' H ` x ) R w <-> ( `' H ` x ) R ( `' H ` y ) ) ) |
| 19 |
17 18
|
anbi12d |
|- ( w = ( `' H ` y ) -> ( ( ( x = ( H ` ( `' H ` x ) ) /\ y = ( H ` w ) ) /\ ( `' H ` x ) R w ) <-> ( ( x = ( H ` ( `' H ` x ) ) /\ y = ( H ` ( `' H ` y ) ) ) /\ ( `' H ` x ) R ( `' H ` y ) ) ) ) |
| 20 |
19
|
rspcev |
|- ( ( ( `' H ` y ) e. A /\ ( ( x = ( H ` ( `' H ` x ) ) /\ y = ( H ` ( `' H ` y ) ) ) /\ ( `' H ` x ) R ( `' H ` y ) ) ) -> E. w e. A ( ( x = ( H ` ( `' H ` x ) ) /\ y = ( H ` w ) ) /\ ( `' H ` x ) R w ) ) |
| 21 |
7 13 14 20
|
syl12anc |
|- ( ( H : A -1-1-onto-> B /\ ( x e. B /\ y e. B ) /\ ( `' H ` x ) R ( `' H ` y ) ) -> E. w e. A ( ( x = ( H ` ( `' H ` x ) ) /\ y = ( H ` w ) ) /\ ( `' H ` x ) R w ) ) |
| 22 |
|
fveq2 |
|- ( z = ( `' H ` x ) -> ( H ` z ) = ( H ` ( `' H ` x ) ) ) |
| 23 |
22
|
eqeq2d |
|- ( z = ( `' H ` x ) -> ( x = ( H ` z ) <-> x = ( H ` ( `' H ` x ) ) ) ) |
| 24 |
23
|
anbi1d |
|- ( z = ( `' H ` x ) -> ( ( x = ( H ` z ) /\ y = ( H ` w ) ) <-> ( x = ( H ` ( `' H ` x ) ) /\ y = ( H ` w ) ) ) ) |
| 25 |
|
breq1 |
|- ( z = ( `' H ` x ) -> ( z R w <-> ( `' H ` x ) R w ) ) |
| 26 |
24 25
|
anbi12d |
|- ( z = ( `' H ` x ) -> ( ( ( x = ( H ` z ) /\ y = ( H ` w ) ) /\ z R w ) <-> ( ( x = ( H ` ( `' H ` x ) ) /\ y = ( H ` w ) ) /\ ( `' H ` x ) R w ) ) ) |
| 27 |
26
|
rexbidv |
|- ( z = ( `' H ` x ) -> ( E. w e. A ( ( x = ( H ` z ) /\ y = ( H ` w ) ) /\ z R w ) <-> E. w e. A ( ( x = ( H ` ( `' H ` x ) ) /\ y = ( H ` w ) ) /\ ( `' H ` x ) R w ) ) ) |
| 28 |
27
|
rspcev |
|- ( ( ( `' H ` x ) e. A /\ E. w e. A ( ( x = ( H ` ( `' H ` x ) ) /\ y = ( H ` w ) ) /\ ( `' H ` x ) R w ) ) -> E. z e. A E. w e. A ( ( x = ( H ` z ) /\ y = ( H ` w ) ) /\ z R w ) ) |
| 29 |
4 21 28
|
syl2anc |
|- ( ( H : A -1-1-onto-> B /\ ( x e. B /\ y e. B ) /\ ( `' H ` x ) R ( `' H ` y ) ) -> E. z e. A E. w e. A ( ( x = ( H ` z ) /\ y = ( H ` w ) ) /\ z R w ) ) |
| 30 |
29
|
3expib |
|- ( H : A -1-1-onto-> B -> ( ( ( x e. B /\ y e. B ) /\ ( `' H ` x ) R ( `' H ` y ) ) -> E. z e. A E. w e. A ( ( x = ( H ` z ) /\ y = ( H ` w ) ) /\ z R w ) ) ) |
| 31 |
|
simp3ll |
|- ( ( H : A -1-1-onto-> B /\ ( z e. A /\ w e. A ) /\ ( ( x = ( H ` z ) /\ y = ( H ` w ) ) /\ z R w ) ) -> x = ( H ` z ) ) |
| 32 |
|
simp1 |
|- ( ( H : A -1-1-onto-> B /\ ( z e. A /\ w e. A ) /\ ( ( x = ( H ` z ) /\ y = ( H ` w ) ) /\ z R w ) ) -> H : A -1-1-onto-> B ) |
| 33 |
|
simp2l |
|- ( ( H : A -1-1-onto-> B /\ ( z e. A /\ w e. A ) /\ ( ( x = ( H ` z ) /\ y = ( H ` w ) ) /\ z R w ) ) -> z e. A ) |
| 34 |
|
f1of |
|- ( H : A -1-1-onto-> B -> H : A --> B ) |
| 35 |
34
|
ffvelcdmda |
|- ( ( H : A -1-1-onto-> B /\ z e. A ) -> ( H ` z ) e. B ) |
| 36 |
32 33 35
|
syl2anc |
|- ( ( H : A -1-1-onto-> B /\ ( z e. A /\ w e. A ) /\ ( ( x = ( H ` z ) /\ y = ( H ` w ) ) /\ z R w ) ) -> ( H ` z ) e. B ) |
| 37 |
31 36
|
eqeltrd |
|- ( ( H : A -1-1-onto-> B /\ ( z e. A /\ w e. A ) /\ ( ( x = ( H ` z ) /\ y = ( H ` w ) ) /\ z R w ) ) -> x e. B ) |
| 38 |
|
simp3lr |
|- ( ( H : A -1-1-onto-> B /\ ( z e. A /\ w e. A ) /\ ( ( x = ( H ` z ) /\ y = ( H ` w ) ) /\ z R w ) ) -> y = ( H ` w ) ) |
| 39 |
|
simp2r |
|- ( ( H : A -1-1-onto-> B /\ ( z e. A /\ w e. A ) /\ ( ( x = ( H ` z ) /\ y = ( H ` w ) ) /\ z R w ) ) -> w e. A ) |
| 40 |
34
|
ffvelcdmda |
|- ( ( H : A -1-1-onto-> B /\ w e. A ) -> ( H ` w ) e. B ) |
| 41 |
32 39 40
|
syl2anc |
|- ( ( H : A -1-1-onto-> B /\ ( z e. A /\ w e. A ) /\ ( ( x = ( H ` z ) /\ y = ( H ` w ) ) /\ z R w ) ) -> ( H ` w ) e. B ) |
| 42 |
38 41
|
eqeltrd |
|- ( ( H : A -1-1-onto-> B /\ ( z e. A /\ w e. A ) /\ ( ( x = ( H ` z ) /\ y = ( H ` w ) ) /\ z R w ) ) -> y e. B ) |
| 43 |
|
simp3r |
|- ( ( H : A -1-1-onto-> B /\ ( z e. A /\ w e. A ) /\ ( ( x = ( H ` z ) /\ y = ( H ` w ) ) /\ z R w ) ) -> z R w ) |
| 44 |
31
|
eqcomd |
|- ( ( H : A -1-1-onto-> B /\ ( z e. A /\ w e. A ) /\ ( ( x = ( H ` z ) /\ y = ( H ` w ) ) /\ z R w ) ) -> ( H ` z ) = x ) |
| 45 |
|
f1ocnvfv |
|- ( ( H : A -1-1-onto-> B /\ z e. A ) -> ( ( H ` z ) = x -> ( `' H ` x ) = z ) ) |
| 46 |
32 33 45
|
syl2anc |
|- ( ( H : A -1-1-onto-> B /\ ( z e. A /\ w e. A ) /\ ( ( x = ( H ` z ) /\ y = ( H ` w ) ) /\ z R w ) ) -> ( ( H ` z ) = x -> ( `' H ` x ) = z ) ) |
| 47 |
44 46
|
mpd |
|- ( ( H : A -1-1-onto-> B /\ ( z e. A /\ w e. A ) /\ ( ( x = ( H ` z ) /\ y = ( H ` w ) ) /\ z R w ) ) -> ( `' H ` x ) = z ) |
| 48 |
38
|
eqcomd |
|- ( ( H : A -1-1-onto-> B /\ ( z e. A /\ w e. A ) /\ ( ( x = ( H ` z ) /\ y = ( H ` w ) ) /\ z R w ) ) -> ( H ` w ) = y ) |
| 49 |
|
f1ocnvfv |
|- ( ( H : A -1-1-onto-> B /\ w e. A ) -> ( ( H ` w ) = y -> ( `' H ` y ) = w ) ) |
| 50 |
32 39 49
|
syl2anc |
|- ( ( H : A -1-1-onto-> B /\ ( z e. A /\ w e. A ) /\ ( ( x = ( H ` z ) /\ y = ( H ` w ) ) /\ z R w ) ) -> ( ( H ` w ) = y -> ( `' H ` y ) = w ) ) |
| 51 |
48 50
|
mpd |
|- ( ( H : A -1-1-onto-> B /\ ( z e. A /\ w e. A ) /\ ( ( x = ( H ` z ) /\ y = ( H ` w ) ) /\ z R w ) ) -> ( `' H ` y ) = w ) |
| 52 |
43 47 51
|
3brtr4d |
|- ( ( H : A -1-1-onto-> B /\ ( z e. A /\ w e. A ) /\ ( ( x = ( H ` z ) /\ y = ( H ` w ) ) /\ z R w ) ) -> ( `' H ` x ) R ( `' H ` y ) ) |
| 53 |
37 42 52
|
jca31 |
|- ( ( H : A -1-1-onto-> B /\ ( z e. A /\ w e. A ) /\ ( ( x = ( H ` z ) /\ y = ( H ` w ) ) /\ z R w ) ) -> ( ( x e. B /\ y e. B ) /\ ( `' H ` x ) R ( `' H ` y ) ) ) |
| 54 |
53
|
3exp |
|- ( H : A -1-1-onto-> B -> ( ( z e. A /\ w e. A ) -> ( ( ( x = ( H ` z ) /\ y = ( H ` w ) ) /\ z R w ) -> ( ( x e. B /\ y e. B ) /\ ( `' H ` x ) R ( `' H ` y ) ) ) ) ) |
| 55 |
54
|
rexlimdvv |
|- ( H : A -1-1-onto-> B -> ( E. z e. A E. w e. A ( ( x = ( H ` z ) /\ y = ( H ` w ) ) /\ z R w ) -> ( ( x e. B /\ y e. B ) /\ ( `' H ` x ) R ( `' H ` y ) ) ) ) |
| 56 |
30 55
|
impbid |
|- ( H : A -1-1-onto-> B -> ( ( ( x e. B /\ y e. B ) /\ ( `' H ` x ) R ( `' H ` y ) ) <-> E. z e. A E. w e. A ( ( x = ( H ` z ) /\ y = ( H ` w ) ) /\ z R w ) ) ) |
| 57 |
56
|
opabbidv |
|- ( H : A -1-1-onto-> B -> { <. x , y >. | ( ( x e. B /\ y e. B ) /\ ( `' H ` x ) R ( `' H ` y ) ) } = { <. x , y >. | E. z e. A E. w e. A ( ( x = ( H ` z ) /\ y = ( H ` w ) ) /\ z R w ) } ) |
| 58 |
1 57
|
eqtrid |
|- ( H : A -1-1-onto-> B -> S = { <. x , y >. | E. z e. A E. w e. A ( ( x = ( H ` z ) /\ y = ( H ` w ) ) /\ z R w ) } ) |
| 59 |
|
f1oiso |
|- ( ( H : A -1-1-onto-> B /\ S = { <. x , y >. | E. z e. A E. w e. A ( ( x = ( H ` z ) /\ y = ( H ` w ) ) /\ z R w ) } ) -> H Isom R , S ( A , B ) ) |
| 60 |
58 59
|
mpdan |
|- ( H : A -1-1-onto-> B -> H Isom R , S ( A , B ) ) |