Metamath Proof Explorer


Theorem f1omo

Description: There is at most one element in the function value of a constant function whose output is 1o . (An artifact of our function value definition.) Proof could be significantly shortened by fvconstdomi assuming ax-un (see f1omoALT ). (Contributed by Zhi Wang, 19-Sep-2024)

Ref Expression
Hypothesis f1omo.1
|- ( ph -> F = ( A X. { 1o } ) )
Assertion f1omo
|- ( ph -> E* y y e. ( F ` X ) )

Proof

Step Hyp Ref Expression
1 f1omo.1
 |-  ( ph -> F = ( A X. { 1o } ) )
2 1oex
 |-  1o e. _V
3 eqid
 |-  ( ( A X. { 1o } ) ` X ) = ( ( A X. { 1o } ) ` X )
4 2 3 fvconst0ci
 |-  ( ( ( A X. { 1o } ) ` X ) = (/) \/ ( ( A X. { 1o } ) ` X ) = 1o )
5 mo0
 |-  ( ( ( A X. { 1o } ) ` X ) = (/) -> E* y y e. ( ( A X. { 1o } ) ` X ) )
6 el1o
 |-  ( y e. 1o <-> y = (/) )
7 el1o
 |-  ( x e. 1o <-> x = (/) )
8 eqtr3
 |-  ( ( y = (/) /\ x = (/) ) -> y = x )
9 6 7 8 syl2anb
 |-  ( ( y e. 1o /\ x e. 1o ) -> y = x )
10 9 gen2
 |-  A. y A. x ( ( y e. 1o /\ x e. 1o ) -> y = x )
11 eleq1w
 |-  ( y = x -> ( y e. 1o <-> x e. 1o ) )
12 11 mo4
 |-  ( E* y y e. 1o <-> A. y A. x ( ( y e. 1o /\ x e. 1o ) -> y = x ) )
13 10 12 mpbir
 |-  E* y y e. 1o
14 eleq2w2
 |-  ( ( ( A X. { 1o } ) ` X ) = 1o -> ( y e. ( ( A X. { 1o } ) ` X ) <-> y e. 1o ) )
15 14 mobidv
 |-  ( ( ( A X. { 1o } ) ` X ) = 1o -> ( E* y y e. ( ( A X. { 1o } ) ` X ) <-> E* y y e. 1o ) )
16 13 15 mpbiri
 |-  ( ( ( A X. { 1o } ) ` X ) = 1o -> E* y y e. ( ( A X. { 1o } ) ` X ) )
17 5 16 jaoi
 |-  ( ( ( ( A X. { 1o } ) ` X ) = (/) \/ ( ( A X. { 1o } ) ` X ) = 1o ) -> E* y y e. ( ( A X. { 1o } ) ` X ) )
18 4 17 ax-mp
 |-  E* y y e. ( ( A X. { 1o } ) ` X )
19 1 fveq1d
 |-  ( ph -> ( F ` X ) = ( ( A X. { 1o } ) ` X ) )
20 19 eleq2d
 |-  ( ph -> ( y e. ( F ` X ) <-> y e. ( ( A X. { 1o } ) ` X ) ) )
21 20 mobidv
 |-  ( ph -> ( E* y y e. ( F ` X ) <-> E* y y e. ( ( A X. { 1o } ) ` X ) ) )
22 18 21 mpbiri
 |-  ( ph -> E* y y e. ( F ` X ) )