| Step |
Hyp |
Ref |
Expression |
| 1 |
|
f1omo.1 |
|- ( ph -> F = ( A X. { 1o } ) ) |
| 2 |
|
1oex |
|- 1o e. _V |
| 3 |
|
eqid |
|- ( ( A X. { 1o } ) ` X ) = ( ( A X. { 1o } ) ` X ) |
| 4 |
2 3
|
fvconst0ci |
|- ( ( ( A X. { 1o } ) ` X ) = (/) \/ ( ( A X. { 1o } ) ` X ) = 1o ) |
| 5 |
|
mo0 |
|- ( ( ( A X. { 1o } ) ` X ) = (/) -> E* y y e. ( ( A X. { 1o } ) ` X ) ) |
| 6 |
|
el1o |
|- ( y e. 1o <-> y = (/) ) |
| 7 |
|
el1o |
|- ( x e. 1o <-> x = (/) ) |
| 8 |
|
eqtr3 |
|- ( ( y = (/) /\ x = (/) ) -> y = x ) |
| 9 |
6 7 8
|
syl2anb |
|- ( ( y e. 1o /\ x e. 1o ) -> y = x ) |
| 10 |
9
|
gen2 |
|- A. y A. x ( ( y e. 1o /\ x e. 1o ) -> y = x ) |
| 11 |
|
eleq1w |
|- ( y = x -> ( y e. 1o <-> x e. 1o ) ) |
| 12 |
11
|
mo4 |
|- ( E* y y e. 1o <-> A. y A. x ( ( y e. 1o /\ x e. 1o ) -> y = x ) ) |
| 13 |
10 12
|
mpbir |
|- E* y y e. 1o |
| 14 |
|
eleq2w2 |
|- ( ( ( A X. { 1o } ) ` X ) = 1o -> ( y e. ( ( A X. { 1o } ) ` X ) <-> y e. 1o ) ) |
| 15 |
14
|
mobidv |
|- ( ( ( A X. { 1o } ) ` X ) = 1o -> ( E* y y e. ( ( A X. { 1o } ) ` X ) <-> E* y y e. 1o ) ) |
| 16 |
13 15
|
mpbiri |
|- ( ( ( A X. { 1o } ) ` X ) = 1o -> E* y y e. ( ( A X. { 1o } ) ` X ) ) |
| 17 |
5 16
|
jaoi |
|- ( ( ( ( A X. { 1o } ) ` X ) = (/) \/ ( ( A X. { 1o } ) ` X ) = 1o ) -> E* y y e. ( ( A X. { 1o } ) ` X ) ) |
| 18 |
4 17
|
ax-mp |
|- E* y y e. ( ( A X. { 1o } ) ` X ) |
| 19 |
1
|
fveq1d |
|- ( ph -> ( F ` X ) = ( ( A X. { 1o } ) ` X ) ) |
| 20 |
19
|
eleq2d |
|- ( ph -> ( y e. ( F ` X ) <-> y e. ( ( A X. { 1o } ) ` X ) ) ) |
| 21 |
20
|
mobidv |
|- ( ph -> ( E* y y e. ( F ` X ) <-> E* y y e. ( ( A X. { 1o } ) ` X ) ) ) |
| 22 |
18 21
|
mpbiri |
|- ( ph -> E* y y e. ( F ` X ) ) |