Metamath Proof Explorer


Theorem f1omoALT

Description: There is at most one element in the function value of a constant function whose output is 1o . (An artifact of our function value definition.) Use f1omo without assuming ax-un . (Contributed by Zhi Wang, 18-Sep-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis f1omoALT.1
|- ( ph -> F = ( A X. { 1o } ) )
Assertion f1omoALT
|- ( ph -> E* y y e. ( F ` X ) )

Proof

Step Hyp Ref Expression
1 f1omoALT.1
 |-  ( ph -> F = ( A X. { 1o } ) )
2 1 fveq1d
 |-  ( ph -> ( F ` X ) = ( ( A X. { 1o } ) ` X ) )
3 1oex
 |-  1o e. _V
4 3 fvconstdomi
 |-  ( ( A X. { 1o } ) ` X ) ~<_ 1o
5 2 4 eqbrtrdi
 |-  ( ph -> ( F ` X ) ~<_ 1o )
6 modom2
 |-  ( E* y y e. ( F ` X ) <-> ( F ` X ) ~<_ 1o )
7 5 6 sylibr
 |-  ( ph -> E* y y e. ( F ` X ) )