Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|- ( ( F : A -1-1-onto-> A /\ X e. dom ( F \ _I ) ) -> X e. dom ( F \ _I ) ) |
2 |
|
f1ofn |
|- ( F : A -1-1-onto-> A -> F Fn A ) |
3 |
|
difss |
|- ( F \ _I ) C_ F |
4 |
|
dmss |
|- ( ( F \ _I ) C_ F -> dom ( F \ _I ) C_ dom F ) |
5 |
3 4
|
ax-mp |
|- dom ( F \ _I ) C_ dom F |
6 |
|
f1odm |
|- ( F : A -1-1-onto-> A -> dom F = A ) |
7 |
5 6
|
sseqtrid |
|- ( F : A -1-1-onto-> A -> dom ( F \ _I ) C_ A ) |
8 |
7
|
sselda |
|- ( ( F : A -1-1-onto-> A /\ X e. dom ( F \ _I ) ) -> X e. A ) |
9 |
|
fnelnfp |
|- ( ( F Fn A /\ X e. A ) -> ( X e. dom ( F \ _I ) <-> ( F ` X ) =/= X ) ) |
10 |
2 8 9
|
syl2an2r |
|- ( ( F : A -1-1-onto-> A /\ X e. dom ( F \ _I ) ) -> ( X e. dom ( F \ _I ) <-> ( F ` X ) =/= X ) ) |
11 |
1 10
|
mpbid |
|- ( ( F : A -1-1-onto-> A /\ X e. dom ( F \ _I ) ) -> ( F ` X ) =/= X ) |
12 |
|
f1of1 |
|- ( F : A -1-1-onto-> A -> F : A -1-1-> A ) |
13 |
12
|
adantr |
|- ( ( F : A -1-1-onto-> A /\ X e. dom ( F \ _I ) ) -> F : A -1-1-> A ) |
14 |
|
f1of |
|- ( F : A -1-1-onto-> A -> F : A --> A ) |
15 |
14
|
adantr |
|- ( ( F : A -1-1-onto-> A /\ X e. dom ( F \ _I ) ) -> F : A --> A ) |
16 |
15 8
|
ffvelrnd |
|- ( ( F : A -1-1-onto-> A /\ X e. dom ( F \ _I ) ) -> ( F ` X ) e. A ) |
17 |
|
f1fveq |
|- ( ( F : A -1-1-> A /\ ( ( F ` X ) e. A /\ X e. A ) ) -> ( ( F ` ( F ` X ) ) = ( F ` X ) <-> ( F ` X ) = X ) ) |
18 |
13 16 8 17
|
syl12anc |
|- ( ( F : A -1-1-onto-> A /\ X e. dom ( F \ _I ) ) -> ( ( F ` ( F ` X ) ) = ( F ` X ) <-> ( F ` X ) = X ) ) |
19 |
18
|
necon3bid |
|- ( ( F : A -1-1-onto-> A /\ X e. dom ( F \ _I ) ) -> ( ( F ` ( F ` X ) ) =/= ( F ` X ) <-> ( F ` X ) =/= X ) ) |
20 |
11 19
|
mpbird |
|- ( ( F : A -1-1-onto-> A /\ X e. dom ( F \ _I ) ) -> ( F ` ( F ` X ) ) =/= ( F ` X ) ) |
21 |
|
fnelnfp |
|- ( ( F Fn A /\ ( F ` X ) e. A ) -> ( ( F ` X ) e. dom ( F \ _I ) <-> ( F ` ( F ` X ) ) =/= ( F ` X ) ) ) |
22 |
2 16 21
|
syl2an2r |
|- ( ( F : A -1-1-onto-> A /\ X e. dom ( F \ _I ) ) -> ( ( F ` X ) e. dom ( F \ _I ) <-> ( F ` ( F ` X ) ) =/= ( F ` X ) ) ) |
23 |
20 22
|
mpbird |
|- ( ( F : A -1-1-onto-> A /\ X e. dom ( F \ _I ) ) -> ( F ` X ) e. dom ( F \ _I ) ) |
24 |
|
eldifsn |
|- ( ( F ` X ) e. ( dom ( F \ _I ) \ { X } ) <-> ( ( F ` X ) e. dom ( F \ _I ) /\ ( F ` X ) =/= X ) ) |
25 |
23 11 24
|
sylanbrc |
|- ( ( F : A -1-1-onto-> A /\ X e. dom ( F \ _I ) ) -> ( F ` X ) e. ( dom ( F \ _I ) \ { X } ) ) |