Step |
Hyp |
Ref |
Expression |
1 |
|
dff13 |
|- ( F : ( A X. B ) -1-1-> C <-> ( F : ( A X. B ) --> C /\ A. v e. ( A X. B ) A. w e. ( A X. B ) ( ( F ` v ) = ( F ` w ) -> v = w ) ) ) |
2 |
|
fveq2 |
|- ( v = <. r , s >. -> ( F ` v ) = ( F ` <. r , s >. ) ) |
3 |
|
df-ov |
|- ( r F s ) = ( F ` <. r , s >. ) |
4 |
2 3
|
eqtr4di |
|- ( v = <. r , s >. -> ( F ` v ) = ( r F s ) ) |
5 |
4
|
eqeq1d |
|- ( v = <. r , s >. -> ( ( F ` v ) = ( F ` w ) <-> ( r F s ) = ( F ` w ) ) ) |
6 |
|
eqeq1 |
|- ( v = <. r , s >. -> ( v = w <-> <. r , s >. = w ) ) |
7 |
5 6
|
imbi12d |
|- ( v = <. r , s >. -> ( ( ( F ` v ) = ( F ` w ) -> v = w ) <-> ( ( r F s ) = ( F ` w ) -> <. r , s >. = w ) ) ) |
8 |
7
|
ralbidv |
|- ( v = <. r , s >. -> ( A. w e. ( A X. B ) ( ( F ` v ) = ( F ` w ) -> v = w ) <-> A. w e. ( A X. B ) ( ( r F s ) = ( F ` w ) -> <. r , s >. = w ) ) ) |
9 |
8
|
ralxp |
|- ( A. v e. ( A X. B ) A. w e. ( A X. B ) ( ( F ` v ) = ( F ` w ) -> v = w ) <-> A. r e. A A. s e. B A. w e. ( A X. B ) ( ( r F s ) = ( F ` w ) -> <. r , s >. = w ) ) |
10 |
|
fveq2 |
|- ( w = <. t , u >. -> ( F ` w ) = ( F ` <. t , u >. ) ) |
11 |
|
df-ov |
|- ( t F u ) = ( F ` <. t , u >. ) |
12 |
10 11
|
eqtr4di |
|- ( w = <. t , u >. -> ( F ` w ) = ( t F u ) ) |
13 |
12
|
eqeq2d |
|- ( w = <. t , u >. -> ( ( r F s ) = ( F ` w ) <-> ( r F s ) = ( t F u ) ) ) |
14 |
|
eqeq2 |
|- ( w = <. t , u >. -> ( <. r , s >. = w <-> <. r , s >. = <. t , u >. ) ) |
15 |
|
vex |
|- r e. _V |
16 |
|
vex |
|- s e. _V |
17 |
15 16
|
opth |
|- ( <. r , s >. = <. t , u >. <-> ( r = t /\ s = u ) ) |
18 |
14 17
|
bitrdi |
|- ( w = <. t , u >. -> ( <. r , s >. = w <-> ( r = t /\ s = u ) ) ) |
19 |
13 18
|
imbi12d |
|- ( w = <. t , u >. -> ( ( ( r F s ) = ( F ` w ) -> <. r , s >. = w ) <-> ( ( r F s ) = ( t F u ) -> ( r = t /\ s = u ) ) ) ) |
20 |
19
|
ralxp |
|- ( A. w e. ( A X. B ) ( ( r F s ) = ( F ` w ) -> <. r , s >. = w ) <-> A. t e. A A. u e. B ( ( r F s ) = ( t F u ) -> ( r = t /\ s = u ) ) ) |
21 |
20
|
2ralbii |
|- ( A. r e. A A. s e. B A. w e. ( A X. B ) ( ( r F s ) = ( F ` w ) -> <. r , s >. = w ) <-> A. r e. A A. s e. B A. t e. A A. u e. B ( ( r F s ) = ( t F u ) -> ( r = t /\ s = u ) ) ) |
22 |
9 21
|
bitri |
|- ( A. v e. ( A X. B ) A. w e. ( A X. B ) ( ( F ` v ) = ( F ` w ) -> v = w ) <-> A. r e. A A. s e. B A. t e. A A. u e. B ( ( r F s ) = ( t F u ) -> ( r = t /\ s = u ) ) ) |
23 |
22
|
anbi2i |
|- ( ( F : ( A X. B ) --> C /\ A. v e. ( A X. B ) A. w e. ( A X. B ) ( ( F ` v ) = ( F ` w ) -> v = w ) ) <-> ( F : ( A X. B ) --> C /\ A. r e. A A. s e. B A. t e. A A. u e. B ( ( r F s ) = ( t F u ) -> ( r = t /\ s = u ) ) ) ) |
24 |
1 23
|
bitri |
|- ( F : ( A X. B ) -1-1-> C <-> ( F : ( A X. B ) --> C /\ A. r e. A A. s e. B A. t e. A A. u e. B ( ( r F s ) = ( t F u ) -> ( r = t /\ s = u ) ) ) ) |