| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dff13 |  |-  ( F : ( A X. B ) -1-1-> C <-> ( F : ( A X. B ) --> C /\ A. v e. ( A X. B ) A. w e. ( A X. B ) ( ( F ` v ) = ( F ` w ) -> v = w ) ) ) | 
						
							| 2 |  | fveq2 |  |-  ( v = <. r , s >. -> ( F ` v ) = ( F ` <. r , s >. ) ) | 
						
							| 3 |  | df-ov |  |-  ( r F s ) = ( F ` <. r , s >. ) | 
						
							| 4 | 2 3 | eqtr4di |  |-  ( v = <. r , s >. -> ( F ` v ) = ( r F s ) ) | 
						
							| 5 | 4 | eqeq1d |  |-  ( v = <. r , s >. -> ( ( F ` v ) = ( F ` w ) <-> ( r F s ) = ( F ` w ) ) ) | 
						
							| 6 |  | eqeq1 |  |-  ( v = <. r , s >. -> ( v = w <-> <. r , s >. = w ) ) | 
						
							| 7 | 5 6 | imbi12d |  |-  ( v = <. r , s >. -> ( ( ( F ` v ) = ( F ` w ) -> v = w ) <-> ( ( r F s ) = ( F ` w ) -> <. r , s >. = w ) ) ) | 
						
							| 8 | 7 | ralbidv |  |-  ( v = <. r , s >. -> ( A. w e. ( A X. B ) ( ( F ` v ) = ( F ` w ) -> v = w ) <-> A. w e. ( A X. B ) ( ( r F s ) = ( F ` w ) -> <. r , s >. = w ) ) ) | 
						
							| 9 | 8 | ralxp |  |-  ( A. v e. ( A X. B ) A. w e. ( A X. B ) ( ( F ` v ) = ( F ` w ) -> v = w ) <-> A. r e. A A. s e. B A. w e. ( A X. B ) ( ( r F s ) = ( F ` w ) -> <. r , s >. = w ) ) | 
						
							| 10 |  | fveq2 |  |-  ( w = <. t , u >. -> ( F ` w ) = ( F ` <. t , u >. ) ) | 
						
							| 11 |  | df-ov |  |-  ( t F u ) = ( F ` <. t , u >. ) | 
						
							| 12 | 10 11 | eqtr4di |  |-  ( w = <. t , u >. -> ( F ` w ) = ( t F u ) ) | 
						
							| 13 | 12 | eqeq2d |  |-  ( w = <. t , u >. -> ( ( r F s ) = ( F ` w ) <-> ( r F s ) = ( t F u ) ) ) | 
						
							| 14 |  | eqeq2 |  |-  ( w = <. t , u >. -> ( <. r , s >. = w <-> <. r , s >. = <. t , u >. ) ) | 
						
							| 15 |  | vex |  |-  r e. _V | 
						
							| 16 |  | vex |  |-  s e. _V | 
						
							| 17 | 15 16 | opth |  |-  ( <. r , s >. = <. t , u >. <-> ( r = t /\ s = u ) ) | 
						
							| 18 | 14 17 | bitrdi |  |-  ( w = <. t , u >. -> ( <. r , s >. = w <-> ( r = t /\ s = u ) ) ) | 
						
							| 19 | 13 18 | imbi12d |  |-  ( w = <. t , u >. -> ( ( ( r F s ) = ( F ` w ) -> <. r , s >. = w ) <-> ( ( r F s ) = ( t F u ) -> ( r = t /\ s = u ) ) ) ) | 
						
							| 20 | 19 | ralxp |  |-  ( A. w e. ( A X. B ) ( ( r F s ) = ( F ` w ) -> <. r , s >. = w ) <-> A. t e. A A. u e. B ( ( r F s ) = ( t F u ) -> ( r = t /\ s = u ) ) ) | 
						
							| 21 | 20 | 2ralbii |  |-  ( A. r e. A A. s e. B A. w e. ( A X. B ) ( ( r F s ) = ( F ` w ) -> <. r , s >. = w ) <-> A. r e. A A. s e. B A. t e. A A. u e. B ( ( r F s ) = ( t F u ) -> ( r = t /\ s = u ) ) ) | 
						
							| 22 | 9 21 | bitri |  |-  ( A. v e. ( A X. B ) A. w e. ( A X. B ) ( ( F ` v ) = ( F ` w ) -> v = w ) <-> A. r e. A A. s e. B A. t e. A A. u e. B ( ( r F s ) = ( t F u ) -> ( r = t /\ s = u ) ) ) | 
						
							| 23 | 22 | anbi2i |  |-  ( ( F : ( A X. B ) --> C /\ A. v e. ( A X. B ) A. w e. ( A X. B ) ( ( F ` v ) = ( F ` w ) -> v = w ) ) <-> ( F : ( A X. B ) --> C /\ A. r e. A A. s e. B A. t e. A A. u e. B ( ( r F s ) = ( t F u ) -> ( r = t /\ s = u ) ) ) ) | 
						
							| 24 | 1 23 | bitri |  |-  ( F : ( A X. B ) -1-1-> C <-> ( F : ( A X. B ) --> C /\ A. r e. A A. s e. B A. t e. A A. u e. B ( ( r F s ) = ( t F u ) -> ( r = t /\ s = u ) ) ) ) |