Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( b e. ( ~P A i^i Fin ) |-> ( F " b ) ) = ( b e. ( ~P A i^i Fin ) |-> ( F " b ) ) |
2 |
|
simpr |
|- ( ( F : A -1-1-onto-> B /\ b e. ( ~P A i^i Fin ) ) -> b e. ( ~P A i^i Fin ) ) |
3 |
2
|
elin2d |
|- ( ( F : A -1-1-onto-> B /\ b e. ( ~P A i^i Fin ) ) -> b e. Fin ) |
4 |
|
f1ofun |
|- ( F : A -1-1-onto-> B -> Fun F ) |
5 |
|
elinel1 |
|- ( b e. ( ~P A i^i Fin ) -> b e. ~P A ) |
6 |
|
elpwi |
|- ( b e. ~P A -> b C_ A ) |
7 |
5 6
|
syl |
|- ( b e. ( ~P A i^i Fin ) -> b C_ A ) |
8 |
7
|
adantl |
|- ( ( F : A -1-1-onto-> B /\ b e. ( ~P A i^i Fin ) ) -> b C_ A ) |
9 |
|
f1odm |
|- ( F : A -1-1-onto-> B -> dom F = A ) |
10 |
9
|
adantr |
|- ( ( F : A -1-1-onto-> B /\ b e. ( ~P A i^i Fin ) ) -> dom F = A ) |
11 |
8 10
|
sseqtrrd |
|- ( ( F : A -1-1-onto-> B /\ b e. ( ~P A i^i Fin ) ) -> b C_ dom F ) |
12 |
|
fores |
|- ( ( Fun F /\ b C_ dom F ) -> ( F |` b ) : b -onto-> ( F " b ) ) |
13 |
4 11 12
|
syl2an2r |
|- ( ( F : A -1-1-onto-> B /\ b e. ( ~P A i^i Fin ) ) -> ( F |` b ) : b -onto-> ( F " b ) ) |
14 |
|
fofi |
|- ( ( b e. Fin /\ ( F |` b ) : b -onto-> ( F " b ) ) -> ( F " b ) e. Fin ) |
15 |
3 13 14
|
syl2anc |
|- ( ( F : A -1-1-onto-> B /\ b e. ( ~P A i^i Fin ) ) -> ( F " b ) e. Fin ) |
16 |
|
imassrn |
|- ( F " b ) C_ ran F |
17 |
|
f1ofo |
|- ( F : A -1-1-onto-> B -> F : A -onto-> B ) |
18 |
|
forn |
|- ( F : A -onto-> B -> ran F = B ) |
19 |
17 18
|
syl |
|- ( F : A -1-1-onto-> B -> ran F = B ) |
20 |
16 19
|
sseqtrid |
|- ( F : A -1-1-onto-> B -> ( F " b ) C_ B ) |
21 |
20
|
adantr |
|- ( ( F : A -1-1-onto-> B /\ b e. ( ~P A i^i Fin ) ) -> ( F " b ) C_ B ) |
22 |
15 21
|
elpwd |
|- ( ( F : A -1-1-onto-> B /\ b e. ( ~P A i^i Fin ) ) -> ( F " b ) e. ~P B ) |
23 |
22 15
|
elind |
|- ( ( F : A -1-1-onto-> B /\ b e. ( ~P A i^i Fin ) ) -> ( F " b ) e. ( ~P B i^i Fin ) ) |
24 |
|
simpr |
|- ( ( F : A -1-1-onto-> B /\ a e. ( ~P B i^i Fin ) ) -> a e. ( ~P B i^i Fin ) ) |
25 |
24
|
elin2d |
|- ( ( F : A -1-1-onto-> B /\ a e. ( ~P B i^i Fin ) ) -> a e. Fin ) |
26 |
|
dff1o3 |
|- ( F : A -1-1-onto-> B <-> ( F : A -onto-> B /\ Fun `' F ) ) |
27 |
26
|
simprbi |
|- ( F : A -1-1-onto-> B -> Fun `' F ) |
28 |
|
elinel1 |
|- ( a e. ( ~P B i^i Fin ) -> a e. ~P B ) |
29 |
28
|
adantl |
|- ( ( F : A -1-1-onto-> B /\ a e. ( ~P B i^i Fin ) ) -> a e. ~P B ) |
30 |
|
elpwi |
|- ( a e. ~P B -> a C_ B ) |
31 |
29 30
|
syl |
|- ( ( F : A -1-1-onto-> B /\ a e. ( ~P B i^i Fin ) ) -> a C_ B ) |
32 |
|
f1ocnv |
|- ( F : A -1-1-onto-> B -> `' F : B -1-1-onto-> A ) |
33 |
32
|
adantr |
|- ( ( F : A -1-1-onto-> B /\ a e. ( ~P B i^i Fin ) ) -> `' F : B -1-1-onto-> A ) |
34 |
|
f1odm |
|- ( `' F : B -1-1-onto-> A -> dom `' F = B ) |
35 |
33 34
|
syl |
|- ( ( F : A -1-1-onto-> B /\ a e. ( ~P B i^i Fin ) ) -> dom `' F = B ) |
36 |
31 35
|
sseqtrrd |
|- ( ( F : A -1-1-onto-> B /\ a e. ( ~P B i^i Fin ) ) -> a C_ dom `' F ) |
37 |
|
fores |
|- ( ( Fun `' F /\ a C_ dom `' F ) -> ( `' F |` a ) : a -onto-> ( `' F " a ) ) |
38 |
27 36 37
|
syl2an2r |
|- ( ( F : A -1-1-onto-> B /\ a e. ( ~P B i^i Fin ) ) -> ( `' F |` a ) : a -onto-> ( `' F " a ) ) |
39 |
|
fofi |
|- ( ( a e. Fin /\ ( `' F |` a ) : a -onto-> ( `' F " a ) ) -> ( `' F " a ) e. Fin ) |
40 |
25 38 39
|
syl2anc |
|- ( ( F : A -1-1-onto-> B /\ a e. ( ~P B i^i Fin ) ) -> ( `' F " a ) e. Fin ) |
41 |
|
imassrn |
|- ( `' F " a ) C_ ran `' F |
42 |
|
dfdm4 |
|- dom F = ran `' F |
43 |
42 9
|
eqtr3id |
|- ( F : A -1-1-onto-> B -> ran `' F = A ) |
44 |
41 43
|
sseqtrid |
|- ( F : A -1-1-onto-> B -> ( `' F " a ) C_ A ) |
45 |
44
|
adantr |
|- ( ( F : A -1-1-onto-> B /\ a e. ( ~P B i^i Fin ) ) -> ( `' F " a ) C_ A ) |
46 |
40 45
|
elpwd |
|- ( ( F : A -1-1-onto-> B /\ a e. ( ~P B i^i Fin ) ) -> ( `' F " a ) e. ~P A ) |
47 |
46 40
|
elind |
|- ( ( F : A -1-1-onto-> B /\ a e. ( ~P B i^i Fin ) ) -> ( `' F " a ) e. ( ~P A i^i Fin ) ) |
48 |
5 28
|
anim12i |
|- ( ( b e. ( ~P A i^i Fin ) /\ a e. ( ~P B i^i Fin ) ) -> ( b e. ~P A /\ a e. ~P B ) ) |
49 |
30
|
adantl |
|- ( ( b e. ~P A /\ a e. ~P B ) -> a C_ B ) |
50 |
|
foimacnv |
|- ( ( F : A -onto-> B /\ a C_ B ) -> ( F " ( `' F " a ) ) = a ) |
51 |
17 49 50
|
syl2an |
|- ( ( F : A -1-1-onto-> B /\ ( b e. ~P A /\ a e. ~P B ) ) -> ( F " ( `' F " a ) ) = a ) |
52 |
51
|
eqcomd |
|- ( ( F : A -1-1-onto-> B /\ ( b e. ~P A /\ a e. ~P B ) ) -> a = ( F " ( `' F " a ) ) ) |
53 |
|
imaeq2 |
|- ( b = ( `' F " a ) -> ( F " b ) = ( F " ( `' F " a ) ) ) |
54 |
53
|
eqeq2d |
|- ( b = ( `' F " a ) -> ( a = ( F " b ) <-> a = ( F " ( `' F " a ) ) ) ) |
55 |
52 54
|
syl5ibrcom |
|- ( ( F : A -1-1-onto-> B /\ ( b e. ~P A /\ a e. ~P B ) ) -> ( b = ( `' F " a ) -> a = ( F " b ) ) ) |
56 |
|
f1of1 |
|- ( F : A -1-1-onto-> B -> F : A -1-1-> B ) |
57 |
6
|
adantr |
|- ( ( b e. ~P A /\ a e. ~P B ) -> b C_ A ) |
58 |
|
f1imacnv |
|- ( ( F : A -1-1-> B /\ b C_ A ) -> ( `' F " ( F " b ) ) = b ) |
59 |
56 57 58
|
syl2an |
|- ( ( F : A -1-1-onto-> B /\ ( b e. ~P A /\ a e. ~P B ) ) -> ( `' F " ( F " b ) ) = b ) |
60 |
59
|
eqcomd |
|- ( ( F : A -1-1-onto-> B /\ ( b e. ~P A /\ a e. ~P B ) ) -> b = ( `' F " ( F " b ) ) ) |
61 |
|
imaeq2 |
|- ( a = ( F " b ) -> ( `' F " a ) = ( `' F " ( F " b ) ) ) |
62 |
61
|
eqeq2d |
|- ( a = ( F " b ) -> ( b = ( `' F " a ) <-> b = ( `' F " ( F " b ) ) ) ) |
63 |
60 62
|
syl5ibrcom |
|- ( ( F : A -1-1-onto-> B /\ ( b e. ~P A /\ a e. ~P B ) ) -> ( a = ( F " b ) -> b = ( `' F " a ) ) ) |
64 |
55 63
|
impbid |
|- ( ( F : A -1-1-onto-> B /\ ( b e. ~P A /\ a e. ~P B ) ) -> ( b = ( `' F " a ) <-> a = ( F " b ) ) ) |
65 |
48 64
|
sylan2 |
|- ( ( F : A -1-1-onto-> B /\ ( b e. ( ~P A i^i Fin ) /\ a e. ( ~P B i^i Fin ) ) ) -> ( b = ( `' F " a ) <-> a = ( F " b ) ) ) |
66 |
1 23 47 65
|
f1o2d |
|- ( F : A -1-1-onto-> B -> ( b e. ( ~P A i^i Fin ) |-> ( F " b ) ) : ( ~P A i^i Fin ) -1-1-onto-> ( ~P B i^i Fin ) ) |