Step |
Hyp |
Ref |
Expression |
1 |
|
f1ssres |
|- ( ( F : A -1-1-> B /\ C C_ A ) -> ( F |` C ) : C -1-1-> B ) |
2 |
|
f1f1orn |
|- ( ( F |` C ) : C -1-1-> B -> ( F |` C ) : C -1-1-onto-> ran ( F |` C ) ) |
3 |
1 2
|
syl |
|- ( ( F : A -1-1-> B /\ C C_ A ) -> ( F |` C ) : C -1-1-onto-> ran ( F |` C ) ) |
4 |
|
df-ima |
|- ( F " C ) = ran ( F |` C ) |
5 |
|
f1oeq3 |
|- ( ( F " C ) = ran ( F |` C ) -> ( ( F |` C ) : C -1-1-onto-> ( F " C ) <-> ( F |` C ) : C -1-1-onto-> ran ( F |` C ) ) ) |
6 |
4 5
|
ax-mp |
|- ( ( F |` C ) : C -1-1-onto-> ( F " C ) <-> ( F |` C ) : C -1-1-onto-> ran ( F |` C ) ) |
7 |
3 6
|
sylibr |
|- ( ( F : A -1-1-> B /\ C C_ A ) -> ( F |` C ) : C -1-1-onto-> ( F " C ) ) |