Description: A singleton of an ordered pair is one-to-one onto function. (Contributed by NM, 18-May-1998) (Proof shortened by Andrew Salmon, 22-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | f1osn.1 | |- A e. _V |
|
| f1osn.2 | |- B e. _V |
||
| Assertion | f1osn | |- { <. A , B >. } : { A } -1-1-onto-> { B } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1osn.1 | |- A e. _V |
|
| 2 | f1osn.2 | |- B e. _V |
|
| 3 | 1 2 | fnsn | |- { <. A , B >. } Fn { A } |
| 4 | 2 1 | fnsn | |- { <. B , A >. } Fn { B } |
| 5 | 1 2 | cnvsn | |- `' { <. A , B >. } = { <. B , A >. } |
| 6 | 5 | fneq1i | |- ( `' { <. A , B >. } Fn { B } <-> { <. B , A >. } Fn { B } ) |
| 7 | 4 6 | mpbir | |- `' { <. A , B >. } Fn { B } |
| 8 | dff1o4 | |- ( { <. A , B >. } : { A } -1-1-onto-> { B } <-> ( { <. A , B >. } Fn { A } /\ `' { <. A , B >. } Fn { B } ) ) |
|
| 9 | 3 7 8 | mpbir2an | |- { <. A , B >. } : { A } -1-1-onto-> { B } |