Description: A singleton of an ordered pair is one-to-one onto function. (Contributed by NM, 18-May-1998) (Proof shortened by Andrew Salmon, 22-Oct-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | f1osn.1 | |- A e. _V |
|
f1osn.2 | |- B e. _V |
||
Assertion | f1osn | |- { <. A , B >. } : { A } -1-1-onto-> { B } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1osn.1 | |- A e. _V |
|
2 | f1osn.2 | |- B e. _V |
|
3 | 1 2 | fnsn | |- { <. A , B >. } Fn { A } |
4 | 2 1 | fnsn | |- { <. B , A >. } Fn { B } |
5 | 1 2 | cnvsn | |- `' { <. A , B >. } = { <. B , A >. } |
6 | 5 | fneq1i | |- ( `' { <. A , B >. } Fn { B } <-> { <. B , A >. } Fn { B } ) |
7 | 4 6 | mpbir | |- `' { <. A , B >. } Fn { B } |
8 | dff1o4 | |- ( { <. A , B >. } : { A } -1-1-onto-> { B } <-> ( { <. A , B >. } Fn { A } /\ `' { <. A , B >. } Fn { B } ) ) |
|
9 | 3 7 8 | mpbir2an | |- { <. A , B >. } : { A } -1-1-onto-> { B } |