Metamath Proof Explorer


Theorem f1osn

Description: A singleton of an ordered pair is one-to-one onto function. (Contributed by NM, 18-May-1998) (Proof shortened by Andrew Salmon, 22-Oct-2011)

Ref Expression
Hypotheses f1osn.1
|- A e. _V
f1osn.2
|- B e. _V
Assertion f1osn
|- { <. A , B >. } : { A } -1-1-onto-> { B }

Proof

Step Hyp Ref Expression
1 f1osn.1
 |-  A e. _V
2 f1osn.2
 |-  B e. _V
3 1 2 fnsn
 |-  { <. A , B >. } Fn { A }
4 2 1 fnsn
 |-  { <. B , A >. } Fn { B }
5 1 2 cnvsn
 |-  `' { <. A , B >. } = { <. B , A >. }
6 5 fneq1i
 |-  ( `' { <. A , B >. } Fn { B } <-> { <. B , A >. } Fn { B } )
7 4 6 mpbir
 |-  `' { <. A , B >. } Fn { B }
8 dff1o4
 |-  ( { <. A , B >. } : { A } -1-1-onto-> { B } <-> ( { <. A , B >. } Fn { A } /\ `' { <. A , B >. } Fn { B } ) )
9 3 7 8 mpbir2an
 |-  { <. A , B >. } : { A } -1-1-onto-> { B }