| Step | Hyp | Ref | Expression | 
						
							| 1 |  | f1ossf1o.x |  |-  X = { w e. A | ( ps /\ ch ) } | 
						
							| 2 |  | f1ossf1o.y |  |-  Y = { w e. A | ps } | 
						
							| 3 |  | f1ossf1o.f |  |-  F = ( x e. X |-> B ) | 
						
							| 4 |  | f1ossf1o.g |  |-  G = ( x e. Y |-> B ) | 
						
							| 5 |  | f1ossf1o.b |  |-  ( ph -> G : Y -1-1-onto-> C ) | 
						
							| 6 |  | f1ossf1o.s |  |-  ( ( ph /\ x e. Y /\ y = B ) -> ( ta <-> [ x / w ] ch ) ) | 
						
							| 7 | 4 5 6 | f1oresrab |  |-  ( ph -> ( G |` { x e. Y | [ x / w ] ch } ) : { x e. Y | [ x / w ] ch } -1-1-onto-> { y e. C | ta } ) | 
						
							| 8 |  | simpl |  |-  ( ( ps /\ ch ) -> ps ) | 
						
							| 9 | 8 | a1i |  |-  ( w e. A -> ( ( ps /\ ch ) -> ps ) ) | 
						
							| 10 | 9 | ss2rabi |  |-  { w e. A | ( ps /\ ch ) } C_ { w e. A | ps } | 
						
							| 11 | 10 1 2 | 3sstr4i |  |-  X C_ Y | 
						
							| 12 | 11 | a1i |  |-  ( ph -> X C_ Y ) | 
						
							| 13 | 12 | resmptd |  |-  ( ph -> ( ( x e. Y |-> B ) |` X ) = ( x e. X |-> B ) ) | 
						
							| 14 | 4 | a1i |  |-  ( ph -> G = ( x e. Y |-> B ) ) | 
						
							| 15 | 2 | rabeqi |  |-  { x e. Y | [ x / w ] ch } = { x e. { w e. A | ps } | [ x / w ] ch } | 
						
							| 16 |  | nfcv |  |-  F/_ w x | 
						
							| 17 |  | nfcv |  |-  F/_ w A | 
						
							| 18 |  | nfs1v |  |-  F/ w [ x / w ] ps | 
						
							| 19 |  | sbequ12 |  |-  ( w = x -> ( ps <-> [ x / w ] ps ) ) | 
						
							| 20 | 16 17 18 19 | elrabf |  |-  ( x e. { w e. A | ps } <-> ( x e. A /\ [ x / w ] ps ) ) | 
						
							| 21 | 20 | anbi1i |  |-  ( ( x e. { w e. A | ps } /\ [ x / w ] ch ) <-> ( ( x e. A /\ [ x / w ] ps ) /\ [ x / w ] ch ) ) | 
						
							| 22 |  | anass |  |-  ( ( ( x e. A /\ [ x / w ] ps ) /\ [ x / w ] ch ) <-> ( x e. A /\ ( [ x / w ] ps /\ [ x / w ] ch ) ) ) | 
						
							| 23 | 21 22 | bitri |  |-  ( ( x e. { w e. A | ps } /\ [ x / w ] ch ) <-> ( x e. A /\ ( [ x / w ] ps /\ [ x / w ] ch ) ) ) | 
						
							| 24 | 23 | rabbia2 |  |-  { x e. { w e. A | ps } | [ x / w ] ch } = { x e. A | ( [ x / w ] ps /\ [ x / w ] ch ) } | 
						
							| 25 |  | nfcv |  |-  F/_ x A | 
						
							| 26 |  | nfv |  |-  F/ x ( ps /\ ch ) | 
						
							| 27 |  | nfs1v |  |-  F/ w [ x / w ] ch | 
						
							| 28 | 18 27 | nfan |  |-  F/ w ( [ x / w ] ps /\ [ x / w ] ch ) | 
						
							| 29 |  | sbequ12 |  |-  ( w = x -> ( ch <-> [ x / w ] ch ) ) | 
						
							| 30 | 19 29 | anbi12d |  |-  ( w = x -> ( ( ps /\ ch ) <-> ( [ x / w ] ps /\ [ x / w ] ch ) ) ) | 
						
							| 31 | 17 25 26 28 30 | cbvrabw |  |-  { w e. A | ( ps /\ ch ) } = { x e. A | ( [ x / w ] ps /\ [ x / w ] ch ) } | 
						
							| 32 | 1 31 | eqtr2i |  |-  { x e. A | ( [ x / w ] ps /\ [ x / w ] ch ) } = X | 
						
							| 33 | 15 24 32 | 3eqtri |  |-  { x e. Y | [ x / w ] ch } = X | 
						
							| 34 | 33 | a1i |  |-  ( ph -> { x e. Y | [ x / w ] ch } = X ) | 
						
							| 35 | 14 34 | reseq12d |  |-  ( ph -> ( G |` { x e. Y | [ x / w ] ch } ) = ( ( x e. Y |-> B ) |` X ) ) | 
						
							| 36 | 3 | a1i |  |-  ( ph -> F = ( x e. X |-> B ) ) | 
						
							| 37 | 13 35 36 | 3eqtr4rd |  |-  ( ph -> F = ( G |` { x e. Y | [ x / w ] ch } ) ) | 
						
							| 38 | 15 24 | eqtr2i |  |-  { x e. A | ( [ x / w ] ps /\ [ x / w ] ch ) } = { x e. Y | [ x / w ] ch } | 
						
							| 39 | 1 31 38 | 3eqtri |  |-  X = { x e. Y | [ x / w ] ch } | 
						
							| 40 | 39 | a1i |  |-  ( ph -> X = { x e. Y | [ x / w ] ch } ) | 
						
							| 41 |  | eqidd |  |-  ( ph -> { y e. C | ta } = { y e. C | ta } ) | 
						
							| 42 | 37 40 41 | f1oeq123d |  |-  ( ph -> ( F : X -1-1-onto-> { y e. C | ta } <-> ( G |` { x e. Y | [ x / w ] ch } ) : { x e. Y | [ x / w ] ch } -1-1-onto-> { y e. C | ta } ) ) | 
						
							| 43 | 7 42 | mpbird |  |-  ( ph -> F : X -1-1-onto-> { y e. C | ta } ) |