Step |
Hyp |
Ref |
Expression |
1 |
|
f1ossf1o.x |
|- X = { w e. A | ( ps /\ ch ) } |
2 |
|
f1ossf1o.y |
|- Y = { w e. A | ps } |
3 |
|
f1ossf1o.f |
|- F = ( x e. X |-> B ) |
4 |
|
f1ossf1o.g |
|- G = ( x e. Y |-> B ) |
5 |
|
f1ossf1o.b |
|- ( ph -> G : Y -1-1-onto-> C ) |
6 |
|
f1ossf1o.s |
|- ( ( ph /\ x e. Y /\ y = B ) -> ( ta <-> [ x / w ] ch ) ) |
7 |
4 5 6
|
f1oresrab |
|- ( ph -> ( G |` { x e. Y | [ x / w ] ch } ) : { x e. Y | [ x / w ] ch } -1-1-onto-> { y e. C | ta } ) |
8 |
|
simpl |
|- ( ( ps /\ ch ) -> ps ) |
9 |
8
|
a1i |
|- ( w e. A -> ( ( ps /\ ch ) -> ps ) ) |
10 |
9
|
ss2rabi |
|- { w e. A | ( ps /\ ch ) } C_ { w e. A | ps } |
11 |
10 1 2
|
3sstr4i |
|- X C_ Y |
12 |
11
|
a1i |
|- ( ph -> X C_ Y ) |
13 |
12
|
resmptd |
|- ( ph -> ( ( x e. Y |-> B ) |` X ) = ( x e. X |-> B ) ) |
14 |
4
|
a1i |
|- ( ph -> G = ( x e. Y |-> B ) ) |
15 |
2
|
rabeqi |
|- { x e. Y | [ x / w ] ch } = { x e. { w e. A | ps } | [ x / w ] ch } |
16 |
|
nfcv |
|- F/_ w x |
17 |
|
nfcv |
|- F/_ w A |
18 |
|
nfs1v |
|- F/ w [ x / w ] ps |
19 |
|
sbequ12 |
|- ( w = x -> ( ps <-> [ x / w ] ps ) ) |
20 |
16 17 18 19
|
elrabf |
|- ( x e. { w e. A | ps } <-> ( x e. A /\ [ x / w ] ps ) ) |
21 |
20
|
anbi1i |
|- ( ( x e. { w e. A | ps } /\ [ x / w ] ch ) <-> ( ( x e. A /\ [ x / w ] ps ) /\ [ x / w ] ch ) ) |
22 |
|
anass |
|- ( ( ( x e. A /\ [ x / w ] ps ) /\ [ x / w ] ch ) <-> ( x e. A /\ ( [ x / w ] ps /\ [ x / w ] ch ) ) ) |
23 |
21 22
|
bitri |
|- ( ( x e. { w e. A | ps } /\ [ x / w ] ch ) <-> ( x e. A /\ ( [ x / w ] ps /\ [ x / w ] ch ) ) ) |
24 |
23
|
rabbia2 |
|- { x e. { w e. A | ps } | [ x / w ] ch } = { x e. A | ( [ x / w ] ps /\ [ x / w ] ch ) } |
25 |
|
nfcv |
|- F/_ x A |
26 |
|
nfv |
|- F/ x ( ps /\ ch ) |
27 |
|
nfs1v |
|- F/ w [ x / w ] ch |
28 |
18 27
|
nfan |
|- F/ w ( [ x / w ] ps /\ [ x / w ] ch ) |
29 |
|
sbequ12 |
|- ( w = x -> ( ch <-> [ x / w ] ch ) ) |
30 |
19 29
|
anbi12d |
|- ( w = x -> ( ( ps /\ ch ) <-> ( [ x / w ] ps /\ [ x / w ] ch ) ) ) |
31 |
17 25 26 28 30
|
cbvrabw |
|- { w e. A | ( ps /\ ch ) } = { x e. A | ( [ x / w ] ps /\ [ x / w ] ch ) } |
32 |
1 31
|
eqtr2i |
|- { x e. A | ( [ x / w ] ps /\ [ x / w ] ch ) } = X |
33 |
15 24 32
|
3eqtri |
|- { x e. Y | [ x / w ] ch } = X |
34 |
33
|
a1i |
|- ( ph -> { x e. Y | [ x / w ] ch } = X ) |
35 |
14 34
|
reseq12d |
|- ( ph -> ( G |` { x e. Y | [ x / w ] ch } ) = ( ( x e. Y |-> B ) |` X ) ) |
36 |
3
|
a1i |
|- ( ph -> F = ( x e. X |-> B ) ) |
37 |
13 35 36
|
3eqtr4rd |
|- ( ph -> F = ( G |` { x e. Y | [ x / w ] ch } ) ) |
38 |
15 24
|
eqtr2i |
|- { x e. A | ( [ x / w ] ps /\ [ x / w ] ch ) } = { x e. Y | [ x / w ] ch } |
39 |
1 31 38
|
3eqtri |
|- X = { x e. Y | [ x / w ] ch } |
40 |
39
|
a1i |
|- ( ph -> X = { x e. Y | [ x / w ] ch } ) |
41 |
|
eqidd |
|- ( ph -> { y e. C | ta } = { y e. C | ta } ) |
42 |
37 40 41
|
f1oeq123d |
|- ( ph -> ( F : X -1-1-onto-> { y e. C | ta } <-> ( G |` { x e. Y | [ x / w ] ch } ) : { x e. Y | [ x / w ] ch } -1-1-onto-> { y e. C | ta } ) ) |
43 |
7 42
|
mpbird |
|- ( ph -> F : X -1-1-onto-> { y e. C | ta } ) |