Metamath Proof Explorer


Theorem f1ovv

Description: The range of a 1-1 onto function is a set iff its domain is a set. (Contributed by AV, 21-Mar-2019)

Ref Expression
Assertion f1ovv
|- ( F : A -1-1-onto-> B -> ( A e. _V <-> B e. _V ) )

Proof

Step Hyp Ref Expression
1 f1ofo
 |-  ( F : A -1-1-onto-> B -> F : A -onto-> B )
2 fornex
 |-  ( A e. _V -> ( F : A -onto-> B -> B e. _V ) )
3 1 2 syl5com
 |-  ( F : A -1-1-onto-> B -> ( A e. _V -> B e. _V ) )
4 f1of1
 |-  ( F : A -1-1-onto-> B -> F : A -1-1-> B )
5 f1dmex
 |-  ( ( F : A -1-1-> B /\ B e. _V ) -> A e. _V )
6 5 ex
 |-  ( F : A -1-1-> B -> ( B e. _V -> A e. _V ) )
7 4 6 syl
 |-  ( F : A -1-1-onto-> B -> ( B e. _V -> A e. _V ) )
8 3 7 impbid
 |-  ( F : A -1-1-onto-> B -> ( A e. _V <-> B e. _V ) )