Step |
Hyp |
Ref |
Expression |
1 |
|
f1owe.1 |
|- R = { <. x , y >. | ( F ` x ) S ( F ` y ) } |
2 |
|
fveq2 |
|- ( x = z -> ( F ` x ) = ( F ` z ) ) |
3 |
2
|
breq1d |
|- ( x = z -> ( ( F ` x ) S ( F ` y ) <-> ( F ` z ) S ( F ` y ) ) ) |
4 |
|
fveq2 |
|- ( y = w -> ( F ` y ) = ( F ` w ) ) |
5 |
4
|
breq2d |
|- ( y = w -> ( ( F ` z ) S ( F ` y ) <-> ( F ` z ) S ( F ` w ) ) ) |
6 |
3 5 1
|
brabg |
|- ( ( z e. A /\ w e. A ) -> ( z R w <-> ( F ` z ) S ( F ` w ) ) ) |
7 |
6
|
rgen2 |
|- A. z e. A A. w e. A ( z R w <-> ( F ` z ) S ( F ` w ) ) |
8 |
|
df-isom |
|- ( F Isom R , S ( A , B ) <-> ( F : A -1-1-onto-> B /\ A. z e. A A. w e. A ( z R w <-> ( F ` z ) S ( F ` w ) ) ) ) |
9 |
|
isowe |
|- ( F Isom R , S ( A , B ) -> ( R We A <-> S We B ) ) |
10 |
8 9
|
sylbir |
|- ( ( F : A -1-1-onto-> B /\ A. z e. A A. w e. A ( z R w <-> ( F ` z ) S ( F ` w ) ) ) -> ( R We A <-> S We B ) ) |
11 |
7 10
|
mpan2 |
|- ( F : A -1-1-onto-> B -> ( R We A <-> S We B ) ) |
12 |
11
|
biimprd |
|- ( F : A -1-1-onto-> B -> ( S We B -> R We A ) ) |