Step |
Hyp |
Ref |
Expression |
1 |
|
f1oweALT.1 |
|- R = { <. x , y >. | ( F ` x ) S ( F ` y ) } |
2 |
|
f1ofo |
|- ( F : A -1-1-onto-> B -> F : A -onto-> B ) |
3 |
|
df-fo |
|- ( F : A -onto-> B <-> ( F Fn A /\ ran F = B ) ) |
4 |
|
freq2 |
|- ( ran F = B -> ( S Fr ran F <-> S Fr B ) ) |
5 |
4
|
biimprd |
|- ( ran F = B -> ( S Fr B -> S Fr ran F ) ) |
6 |
|
df-fn |
|- ( F Fn A <-> ( Fun F /\ dom F = A ) ) |
7 |
|
df-fr |
|- ( S Fr ran F <-> A. w ( ( w C_ ran F /\ w =/= (/) ) -> E. u e. w A. f e. w -. f S u ) ) |
8 |
|
vex |
|- z e. _V |
9 |
8
|
funimaex |
|- ( Fun F -> ( F " z ) e. _V ) |
10 |
|
n0 |
|- ( z =/= (/) <-> E. w w e. z ) |
11 |
|
funfvima2 |
|- ( ( Fun F /\ z C_ dom F ) -> ( w e. z -> ( F ` w ) e. ( F " z ) ) ) |
12 |
|
ne0i |
|- ( ( F ` w ) e. ( F " z ) -> ( F " z ) =/= (/) ) |
13 |
11 12
|
syl6 |
|- ( ( Fun F /\ z C_ dom F ) -> ( w e. z -> ( F " z ) =/= (/) ) ) |
14 |
13
|
exlimdv |
|- ( ( Fun F /\ z C_ dom F ) -> ( E. w w e. z -> ( F " z ) =/= (/) ) ) |
15 |
10 14
|
syl5bi |
|- ( ( Fun F /\ z C_ dom F ) -> ( z =/= (/) -> ( F " z ) =/= (/) ) ) |
16 |
15
|
imp |
|- ( ( ( Fun F /\ z C_ dom F ) /\ z =/= (/) ) -> ( F " z ) =/= (/) ) |
17 |
|
imassrn |
|- ( F " z ) C_ ran F |
18 |
16 17
|
jctil |
|- ( ( ( Fun F /\ z C_ dom F ) /\ z =/= (/) ) -> ( ( F " z ) C_ ran F /\ ( F " z ) =/= (/) ) ) |
19 |
|
sseq1 |
|- ( w = ( F " z ) -> ( w C_ ran F <-> ( F " z ) C_ ran F ) ) |
20 |
|
neeq1 |
|- ( w = ( F " z ) -> ( w =/= (/) <-> ( F " z ) =/= (/) ) ) |
21 |
19 20
|
anbi12d |
|- ( w = ( F " z ) -> ( ( w C_ ran F /\ w =/= (/) ) <-> ( ( F " z ) C_ ran F /\ ( F " z ) =/= (/) ) ) ) |
22 |
|
raleq |
|- ( w = ( F " z ) -> ( A. f e. w -. f S u <-> A. f e. ( F " z ) -. f S u ) ) |
23 |
22
|
rexeqbi1dv |
|- ( w = ( F " z ) -> ( E. u e. w A. f e. w -. f S u <-> E. u e. ( F " z ) A. f e. ( F " z ) -. f S u ) ) |
24 |
21 23
|
imbi12d |
|- ( w = ( F " z ) -> ( ( ( w C_ ran F /\ w =/= (/) ) -> E. u e. w A. f e. w -. f S u ) <-> ( ( ( F " z ) C_ ran F /\ ( F " z ) =/= (/) ) -> E. u e. ( F " z ) A. f e. ( F " z ) -. f S u ) ) ) |
25 |
24
|
spcgv |
|- ( ( F " z ) e. _V -> ( A. w ( ( w C_ ran F /\ w =/= (/) ) -> E. u e. w A. f e. w -. f S u ) -> ( ( ( F " z ) C_ ran F /\ ( F " z ) =/= (/) ) -> E. u e. ( F " z ) A. f e. ( F " z ) -. f S u ) ) ) |
26 |
18 25
|
syl7 |
|- ( ( F " z ) e. _V -> ( A. w ( ( w C_ ran F /\ w =/= (/) ) -> E. u e. w A. f e. w -. f S u ) -> ( ( ( Fun F /\ z C_ dom F ) /\ z =/= (/) ) -> E. u e. ( F " z ) A. f e. ( F " z ) -. f S u ) ) ) |
27 |
9 26
|
syl |
|- ( Fun F -> ( A. w ( ( w C_ ran F /\ w =/= (/) ) -> E. u e. w A. f e. w -. f S u ) -> ( ( ( Fun F /\ z C_ dom F ) /\ z =/= (/) ) -> E. u e. ( F " z ) A. f e. ( F " z ) -. f S u ) ) ) |
28 |
7 27
|
syl5bi |
|- ( Fun F -> ( S Fr ran F -> ( ( ( Fun F /\ z C_ dom F ) /\ z =/= (/) ) -> E. u e. ( F " z ) A. f e. ( F " z ) -. f S u ) ) ) |
29 |
28
|
com23 |
|- ( Fun F -> ( ( ( Fun F /\ z C_ dom F ) /\ z =/= (/) ) -> ( S Fr ran F -> E. u e. ( F " z ) A. f e. ( F " z ) -. f S u ) ) ) |
30 |
29
|
expd |
|- ( Fun F -> ( ( Fun F /\ z C_ dom F ) -> ( z =/= (/) -> ( S Fr ran F -> E. u e. ( F " z ) A. f e. ( F " z ) -. f S u ) ) ) ) |
31 |
30
|
anabsi5 |
|- ( ( Fun F /\ z C_ dom F ) -> ( z =/= (/) -> ( S Fr ran F -> E. u e. ( F " z ) A. f e. ( F " z ) -. f S u ) ) ) |
32 |
31
|
impd |
|- ( ( Fun F /\ z C_ dom F ) -> ( ( z =/= (/) /\ S Fr ran F ) -> E. u e. ( F " z ) A. f e. ( F " z ) -. f S u ) ) |
33 |
|
fores |
|- ( ( Fun F /\ z C_ dom F ) -> ( F |` z ) : z -onto-> ( F " z ) ) |
34 |
|
vex |
|- v e. _V |
35 |
|
vex |
|- w e. _V |
36 |
|
fveq2 |
|- ( x = v -> ( F ` x ) = ( F ` v ) ) |
37 |
36
|
breq1d |
|- ( x = v -> ( ( F ` x ) S ( F ` y ) <-> ( F ` v ) S ( F ` y ) ) ) |
38 |
|
fveq2 |
|- ( y = w -> ( F ` y ) = ( F ` w ) ) |
39 |
38
|
breq2d |
|- ( y = w -> ( ( F ` v ) S ( F ` y ) <-> ( F ` v ) S ( F ` w ) ) ) |
40 |
34 35 37 39 1
|
brab |
|- ( v R w <-> ( F ` v ) S ( F ` w ) ) |
41 |
|
fvres |
|- ( v e. z -> ( ( F |` z ) ` v ) = ( F ` v ) ) |
42 |
|
fvres |
|- ( w e. z -> ( ( F |` z ) ` w ) = ( F ` w ) ) |
43 |
41 42
|
breqan12rd |
|- ( ( w e. z /\ v e. z ) -> ( ( ( F |` z ) ` v ) S ( ( F |` z ) ` w ) <-> ( F ` v ) S ( F ` w ) ) ) |
44 |
40 43
|
bitr4id |
|- ( ( w e. z /\ v e. z ) -> ( v R w <-> ( ( F |` z ) ` v ) S ( ( F |` z ) ` w ) ) ) |
45 |
44
|
notbid |
|- ( ( w e. z /\ v e. z ) -> ( -. v R w <-> -. ( ( F |` z ) ` v ) S ( ( F |` z ) ` w ) ) ) |
46 |
45
|
ralbidva |
|- ( w e. z -> ( A. v e. z -. v R w <-> A. v e. z -. ( ( F |` z ) ` v ) S ( ( F |` z ) ` w ) ) ) |
47 |
46
|
rexbiia |
|- ( E. w e. z A. v e. z -. v R w <-> E. w e. z A. v e. z -. ( ( F |` z ) ` v ) S ( ( F |` z ) ` w ) ) |
48 |
|
breq1 |
|- ( ( ( F |` z ) ` v ) = f -> ( ( ( F |` z ) ` v ) S ( ( F |` z ) ` w ) <-> f S ( ( F |` z ) ` w ) ) ) |
49 |
48
|
notbid |
|- ( ( ( F |` z ) ` v ) = f -> ( -. ( ( F |` z ) ` v ) S ( ( F |` z ) ` w ) <-> -. f S ( ( F |` z ) ` w ) ) ) |
50 |
49
|
cbvfo |
|- ( ( F |` z ) : z -onto-> ( F " z ) -> ( A. v e. z -. ( ( F |` z ) ` v ) S ( ( F |` z ) ` w ) <-> A. f e. ( F " z ) -. f S ( ( F |` z ) ` w ) ) ) |
51 |
50
|
rexbidv |
|- ( ( F |` z ) : z -onto-> ( F " z ) -> ( E. w e. z A. v e. z -. ( ( F |` z ) ` v ) S ( ( F |` z ) ` w ) <-> E. w e. z A. f e. ( F " z ) -. f S ( ( F |` z ) ` w ) ) ) |
52 |
|
breq2 |
|- ( ( ( F |` z ) ` w ) = u -> ( f S ( ( F |` z ) ` w ) <-> f S u ) ) |
53 |
52
|
notbid |
|- ( ( ( F |` z ) ` w ) = u -> ( -. f S ( ( F |` z ) ` w ) <-> -. f S u ) ) |
54 |
53
|
ralbidv |
|- ( ( ( F |` z ) ` w ) = u -> ( A. f e. ( F " z ) -. f S ( ( F |` z ) ` w ) <-> A. f e. ( F " z ) -. f S u ) ) |
55 |
54
|
cbvexfo |
|- ( ( F |` z ) : z -onto-> ( F " z ) -> ( E. w e. z A. f e. ( F " z ) -. f S ( ( F |` z ) ` w ) <-> E. u e. ( F " z ) A. f e. ( F " z ) -. f S u ) ) |
56 |
51 55
|
bitrd |
|- ( ( F |` z ) : z -onto-> ( F " z ) -> ( E. w e. z A. v e. z -. ( ( F |` z ) ` v ) S ( ( F |` z ) ` w ) <-> E. u e. ( F " z ) A. f e. ( F " z ) -. f S u ) ) |
57 |
47 56
|
bitrid |
|- ( ( F |` z ) : z -onto-> ( F " z ) -> ( E. w e. z A. v e. z -. v R w <-> E. u e. ( F " z ) A. f e. ( F " z ) -. f S u ) ) |
58 |
33 57
|
syl |
|- ( ( Fun F /\ z C_ dom F ) -> ( E. w e. z A. v e. z -. v R w <-> E. u e. ( F " z ) A. f e. ( F " z ) -. f S u ) ) |
59 |
32 58
|
sylibrd |
|- ( ( Fun F /\ z C_ dom F ) -> ( ( z =/= (/) /\ S Fr ran F ) -> E. w e. z A. v e. z -. v R w ) ) |
60 |
59
|
exp4b |
|- ( Fun F -> ( z C_ dom F -> ( z =/= (/) -> ( S Fr ran F -> E. w e. z A. v e. z -. v R w ) ) ) ) |
61 |
60
|
com34 |
|- ( Fun F -> ( z C_ dom F -> ( S Fr ran F -> ( z =/= (/) -> E. w e. z A. v e. z -. v R w ) ) ) ) |
62 |
61
|
com23 |
|- ( Fun F -> ( S Fr ran F -> ( z C_ dom F -> ( z =/= (/) -> E. w e. z A. v e. z -. v R w ) ) ) ) |
63 |
62
|
imp4a |
|- ( Fun F -> ( S Fr ran F -> ( ( z C_ dom F /\ z =/= (/) ) -> E. w e. z A. v e. z -. v R w ) ) ) |
64 |
63
|
alrimdv |
|- ( Fun F -> ( S Fr ran F -> A. z ( ( z C_ dom F /\ z =/= (/) ) -> E. w e. z A. v e. z -. v R w ) ) ) |
65 |
|
df-fr |
|- ( R Fr dom F <-> A. z ( ( z C_ dom F /\ z =/= (/) ) -> E. w e. z A. v e. z -. v R w ) ) |
66 |
64 65
|
syl6ibr |
|- ( Fun F -> ( S Fr ran F -> R Fr dom F ) ) |
67 |
|
freq2 |
|- ( dom F = A -> ( R Fr dom F <-> R Fr A ) ) |
68 |
67
|
biimpd |
|- ( dom F = A -> ( R Fr dom F -> R Fr A ) ) |
69 |
66 68
|
sylan9 |
|- ( ( Fun F /\ dom F = A ) -> ( S Fr ran F -> R Fr A ) ) |
70 |
6 69
|
sylbi |
|- ( F Fn A -> ( S Fr ran F -> R Fr A ) ) |
71 |
5 70
|
sylan9r |
|- ( ( F Fn A /\ ran F = B ) -> ( S Fr B -> R Fr A ) ) |
72 |
3 71
|
sylbi |
|- ( F : A -onto-> B -> ( S Fr B -> R Fr A ) ) |
73 |
2 72
|
syl |
|- ( F : A -1-1-onto-> B -> ( S Fr B -> R Fr A ) ) |
74 |
|
df-f1o |
|- ( F : A -1-1-onto-> B <-> ( F : A -1-1-> B /\ F : A -onto-> B ) ) |
75 |
|
fveq2 |
|- ( x = w -> ( F ` x ) = ( F ` w ) ) |
76 |
75
|
breq1d |
|- ( x = w -> ( ( F ` x ) S ( F ` y ) <-> ( F ` w ) S ( F ` y ) ) ) |
77 |
|
fveq2 |
|- ( y = v -> ( F ` y ) = ( F ` v ) ) |
78 |
77
|
breq2d |
|- ( y = v -> ( ( F ` w ) S ( F ` y ) <-> ( F ` w ) S ( F ` v ) ) ) |
79 |
35 34 76 78 1
|
brab |
|- ( w R v <-> ( F ` w ) S ( F ` v ) ) |
80 |
79
|
a1i |
|- ( ( F : A -1-1-> B /\ ( w e. A /\ v e. A ) ) -> ( w R v <-> ( F ` w ) S ( F ` v ) ) ) |
81 |
|
f1fveq |
|- ( ( F : A -1-1-> B /\ ( w e. A /\ v e. A ) ) -> ( ( F ` w ) = ( F ` v ) <-> w = v ) ) |
82 |
81
|
bicomd |
|- ( ( F : A -1-1-> B /\ ( w e. A /\ v e. A ) ) -> ( w = v <-> ( F ` w ) = ( F ` v ) ) ) |
83 |
40
|
a1i |
|- ( ( F : A -1-1-> B /\ ( w e. A /\ v e. A ) ) -> ( v R w <-> ( F ` v ) S ( F ` w ) ) ) |
84 |
80 82 83
|
3orbi123d |
|- ( ( F : A -1-1-> B /\ ( w e. A /\ v e. A ) ) -> ( ( w R v \/ w = v \/ v R w ) <-> ( ( F ` w ) S ( F ` v ) \/ ( F ` w ) = ( F ` v ) \/ ( F ` v ) S ( F ` w ) ) ) ) |
85 |
84
|
2ralbidva |
|- ( F : A -1-1-> B -> ( A. w e. A A. v e. A ( w R v \/ w = v \/ v R w ) <-> A. w e. A A. v e. A ( ( F ` w ) S ( F ` v ) \/ ( F ` w ) = ( F ` v ) \/ ( F ` v ) S ( F ` w ) ) ) ) |
86 |
|
breq1 |
|- ( ( F ` w ) = u -> ( ( F ` w ) S ( F ` v ) <-> u S ( F ` v ) ) ) |
87 |
|
eqeq1 |
|- ( ( F ` w ) = u -> ( ( F ` w ) = ( F ` v ) <-> u = ( F ` v ) ) ) |
88 |
|
breq2 |
|- ( ( F ` w ) = u -> ( ( F ` v ) S ( F ` w ) <-> ( F ` v ) S u ) ) |
89 |
86 87 88
|
3orbi123d |
|- ( ( F ` w ) = u -> ( ( ( F ` w ) S ( F ` v ) \/ ( F ` w ) = ( F ` v ) \/ ( F ` v ) S ( F ` w ) ) <-> ( u S ( F ` v ) \/ u = ( F ` v ) \/ ( F ` v ) S u ) ) ) |
90 |
89
|
ralbidv |
|- ( ( F ` w ) = u -> ( A. v e. A ( ( F ` w ) S ( F ` v ) \/ ( F ` w ) = ( F ` v ) \/ ( F ` v ) S ( F ` w ) ) <-> A. v e. A ( u S ( F ` v ) \/ u = ( F ` v ) \/ ( F ` v ) S u ) ) ) |
91 |
90
|
cbvfo |
|- ( F : A -onto-> B -> ( A. w e. A A. v e. A ( ( F ` w ) S ( F ` v ) \/ ( F ` w ) = ( F ` v ) \/ ( F ` v ) S ( F ` w ) ) <-> A. u e. B A. v e. A ( u S ( F ` v ) \/ u = ( F ` v ) \/ ( F ` v ) S u ) ) ) |
92 |
|
breq2 |
|- ( ( F ` v ) = f -> ( u S ( F ` v ) <-> u S f ) ) |
93 |
|
eqeq2 |
|- ( ( F ` v ) = f -> ( u = ( F ` v ) <-> u = f ) ) |
94 |
|
breq1 |
|- ( ( F ` v ) = f -> ( ( F ` v ) S u <-> f S u ) ) |
95 |
92 93 94
|
3orbi123d |
|- ( ( F ` v ) = f -> ( ( u S ( F ` v ) \/ u = ( F ` v ) \/ ( F ` v ) S u ) <-> ( u S f \/ u = f \/ f S u ) ) ) |
96 |
95
|
cbvfo |
|- ( F : A -onto-> B -> ( A. v e. A ( u S ( F ` v ) \/ u = ( F ` v ) \/ ( F ` v ) S u ) <-> A. f e. B ( u S f \/ u = f \/ f S u ) ) ) |
97 |
96
|
ralbidv |
|- ( F : A -onto-> B -> ( A. u e. B A. v e. A ( u S ( F ` v ) \/ u = ( F ` v ) \/ ( F ` v ) S u ) <-> A. u e. B A. f e. B ( u S f \/ u = f \/ f S u ) ) ) |
98 |
91 97
|
bitrd |
|- ( F : A -onto-> B -> ( A. w e. A A. v e. A ( ( F ` w ) S ( F ` v ) \/ ( F ` w ) = ( F ` v ) \/ ( F ` v ) S ( F ` w ) ) <-> A. u e. B A. f e. B ( u S f \/ u = f \/ f S u ) ) ) |
99 |
85 98
|
sylan9bb |
|- ( ( F : A -1-1-> B /\ F : A -onto-> B ) -> ( A. w e. A A. v e. A ( w R v \/ w = v \/ v R w ) <-> A. u e. B A. f e. B ( u S f \/ u = f \/ f S u ) ) ) |
100 |
74 99
|
sylbi |
|- ( F : A -1-1-onto-> B -> ( A. w e. A A. v e. A ( w R v \/ w = v \/ v R w ) <-> A. u e. B A. f e. B ( u S f \/ u = f \/ f S u ) ) ) |
101 |
100
|
biimprd |
|- ( F : A -1-1-onto-> B -> ( A. u e. B A. f e. B ( u S f \/ u = f \/ f S u ) -> A. w e. A A. v e. A ( w R v \/ w = v \/ v R w ) ) ) |
102 |
73 101
|
anim12d |
|- ( F : A -1-1-onto-> B -> ( ( S Fr B /\ A. u e. B A. f e. B ( u S f \/ u = f \/ f S u ) ) -> ( R Fr A /\ A. w e. A A. v e. A ( w R v \/ w = v \/ v R w ) ) ) ) |
103 |
|
dfwe2 |
|- ( S We B <-> ( S Fr B /\ A. u e. B A. f e. B ( u S f \/ u = f \/ f S u ) ) ) |
104 |
|
dfwe2 |
|- ( R We A <-> ( R Fr A /\ A. w e. A A. v e. A ( w R v \/ w = v \/ v R w ) ) ) |
105 |
102 103 104
|
3imtr4g |
|- ( F : A -1-1-onto-> B -> ( S We B -> R We A ) ) |