Step |
Hyp |
Ref |
Expression |
1 |
|
gim0to0ALT.a |
|- A = ( Base ` R ) |
2 |
|
gim0to0ALT.b |
|- B = ( Base ` S ) |
3 |
|
gim0to0ALT.n |
|- N = ( 0g ` S ) |
4 |
|
gim0to0ALT.0 |
|- .0. = ( 0g ` R ) |
5 |
|
rhmghm |
|- ( F e. ( R RingHom S ) -> F e. ( R GrpHom S ) ) |
6 |
5
|
adantr |
|- ( ( F e. ( R RingHom S ) /\ X e. A ) -> F e. ( R GrpHom S ) ) |
7 |
1 2 4 3
|
ghmf1 |
|- ( F e. ( R GrpHom S ) -> ( F : A -1-1-> B <-> A. x e. A ( ( F ` x ) = N -> x = .0. ) ) ) |
8 |
6 7
|
syl |
|- ( ( F e. ( R RingHom S ) /\ X e. A ) -> ( F : A -1-1-> B <-> A. x e. A ( ( F ` x ) = N -> x = .0. ) ) ) |
9 |
|
fveq2 |
|- ( x = X -> ( F ` x ) = ( F ` X ) ) |
10 |
9
|
eqeq1d |
|- ( x = X -> ( ( F ` x ) = N <-> ( F ` X ) = N ) ) |
11 |
|
eqeq1 |
|- ( x = X -> ( x = .0. <-> X = .0. ) ) |
12 |
10 11
|
imbi12d |
|- ( x = X -> ( ( ( F ` x ) = N -> x = .0. ) <-> ( ( F ` X ) = N -> X = .0. ) ) ) |
13 |
12
|
rspcv |
|- ( X e. A -> ( A. x e. A ( ( F ` x ) = N -> x = .0. ) -> ( ( F ` X ) = N -> X = .0. ) ) ) |
14 |
13
|
adantl |
|- ( ( F e. ( R RingHom S ) /\ X e. A ) -> ( A. x e. A ( ( F ` x ) = N -> x = .0. ) -> ( ( F ` X ) = N -> X = .0. ) ) ) |
15 |
8 14
|
sylbid |
|- ( ( F e. ( R RingHom S ) /\ X e. A ) -> ( F : A -1-1-> B -> ( ( F ` X ) = N -> X = .0. ) ) ) |
16 |
15
|
ex |
|- ( F e. ( R RingHom S ) -> ( X e. A -> ( F : A -1-1-> B -> ( ( F ` X ) = N -> X = .0. ) ) ) ) |
17 |
16
|
com23 |
|- ( F e. ( R RingHom S ) -> ( F : A -1-1-> B -> ( X e. A -> ( ( F ` X ) = N -> X = .0. ) ) ) ) |
18 |
17
|
3imp |
|- ( ( F e. ( R RingHom S ) /\ F : A -1-1-> B /\ X e. A ) -> ( ( F ` X ) = N -> X = .0. ) ) |
19 |
|
fveq2 |
|- ( X = .0. -> ( F ` X ) = ( F ` .0. ) ) |
20 |
4 3
|
ghmid |
|- ( F e. ( R GrpHom S ) -> ( F ` .0. ) = N ) |
21 |
5 20
|
syl |
|- ( F e. ( R RingHom S ) -> ( F ` .0. ) = N ) |
22 |
21
|
3ad2ant1 |
|- ( ( F e. ( R RingHom S ) /\ F : A -1-1-> B /\ X e. A ) -> ( F ` .0. ) = N ) |
23 |
19 22
|
sylan9eqr |
|- ( ( ( F e. ( R RingHom S ) /\ F : A -1-1-> B /\ X e. A ) /\ X = .0. ) -> ( F ` X ) = N ) |
24 |
23
|
ex |
|- ( ( F e. ( R RingHom S ) /\ F : A -1-1-> B /\ X e. A ) -> ( X = .0. -> ( F ` X ) = N ) ) |
25 |
18 24
|
impbid |
|- ( ( F e. ( R RingHom S ) /\ F : A -1-1-> B /\ X e. A ) -> ( ( F ` X ) = N <-> X = .0. ) ) |