Metamath Proof Explorer


Theorem f1rnen

Description: Equinumerosity of the range of an injective function. (Contributed by Thierry Arnoux, 7-Jul-2023)

Ref Expression
Assertion f1rnen
|- ( ( F : A -1-1-> B /\ A e. V ) -> ran F ~~ A )

Proof

Step Hyp Ref Expression
1 f1fn
 |-  ( F : A -1-1-> B -> F Fn A )
2 1 adantr
 |-  ( ( F : A -1-1-> B /\ A e. V ) -> F Fn A )
3 fnima
 |-  ( F Fn A -> ( F " A ) = ran F )
4 2 3 syl
 |-  ( ( F : A -1-1-> B /\ A e. V ) -> ( F " A ) = ran F )
5 ssid
 |-  A C_ A
6 f1imaeng
 |-  ( ( F : A -1-1-> B /\ A C_ A /\ A e. V ) -> ( F " A ) ~~ A )
7 5 6 mp3an2
 |-  ( ( F : A -1-1-> B /\ A e. V ) -> ( F " A ) ~~ A )
8 4 7 eqbrtrrd
 |-  ( ( F : A -1-1-> B /\ A e. V ) -> ran F ~~ A )