Metamath Proof Explorer


Theorem f1setex

Description: The set of injections between two classes exists if the codomain exists. (Contributed by AV, 14-Aug-2024)

Ref Expression
Assertion f1setex
|- ( B e. V -> { f | f : A -1-1-> B } e. _V )

Proof

Step Hyp Ref Expression
1 fsetex
 |-  ( B e. V -> { f | f : A --> B } e. _V )
2 df-f1
 |-  ( f : A -1-1-> B <-> ( f : A --> B /\ Fun `' f ) )
3 2 abbii
 |-  { f | f : A -1-1-> B } = { f | ( f : A --> B /\ Fun `' f ) }
4 abanssl
 |-  { f | ( f : A --> B /\ Fun `' f ) } C_ { f | f : A --> B }
5 3 4 eqsstri
 |-  { f | f : A -1-1-> B } C_ { f | f : A --> B }
6 5 a1i
 |-  ( B e. V -> { f | f : A -1-1-> B } C_ { f | f : A --> B } )
7 1 6 ssexd
 |-  ( B e. V -> { f | f : A -1-1-> B } e. _V )