Description: A function that is one-to-one is also one-to-one on some superset of its codomain. (Contributed by Mario Carneiro, 12-Jan-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | f1ss | |- ( ( F : A -1-1-> B /\ B C_ C ) -> F : A -1-1-> C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1f | |- ( F : A -1-1-> B -> F : A --> B ) |
|
2 | fss | |- ( ( F : A --> B /\ B C_ C ) -> F : A --> C ) |
|
3 | 1 2 | sylan | |- ( ( F : A -1-1-> B /\ B C_ C ) -> F : A --> C ) |
4 | df-f1 | |- ( F : A -1-1-> B <-> ( F : A --> B /\ Fun `' F ) ) |
|
5 | 4 | simprbi | |- ( F : A -1-1-> B -> Fun `' F ) |
6 | 5 | adantr | |- ( ( F : A -1-1-> B /\ B C_ C ) -> Fun `' F ) |
7 | df-f1 | |- ( F : A -1-1-> C <-> ( F : A --> C /\ Fun `' F ) ) |
|
8 | 3 6 7 | sylanbrc | |- ( ( F : A -1-1-> B /\ B C_ C ) -> F : A -1-1-> C ) |