Description: A function that is one-to-one is also one-to-one on some superset of its codomain. (Contributed by Mario Carneiro, 12-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1ss | |- ( ( F : A -1-1-> B /\ B C_ C ) -> F : A -1-1-> C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1f | |- ( F : A -1-1-> B -> F : A --> B ) |
|
| 2 | fss | |- ( ( F : A --> B /\ B C_ C ) -> F : A --> C ) |
|
| 3 | 1 2 | sylan | |- ( ( F : A -1-1-> B /\ B C_ C ) -> F : A --> C ) |
| 4 | df-f1 | |- ( F : A -1-1-> B <-> ( F : A --> B /\ Fun `' F ) ) |
|
| 5 | 4 | simprbi | |- ( F : A -1-1-> B -> Fun `' F ) |
| 6 | 5 | adantr | |- ( ( F : A -1-1-> B /\ B C_ C ) -> Fun `' F ) |
| 7 | df-f1 | |- ( F : A -1-1-> C <-> ( F : A --> C /\ Fun `' F ) ) |
|
| 8 | 3 6 7 | sylanbrc | |- ( ( F : A -1-1-> B /\ B C_ C ) -> F : A -1-1-> C ) |